

2025 CANADIAN Geochemistry Schedule of Services & Fees

ACTLABS.COM

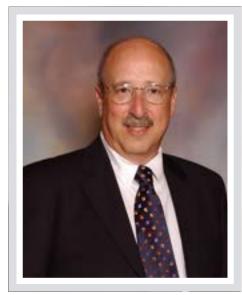


Table of Contents

Table of Contents2
In Memoriam3
A Tribute to Dr. Eric Laurence Hoffman
General Information4
Sample Packaging & Shipping Instructions
Report Formats
Turnaround Time
Sample Preparation5
Sample Preparation & Return, Disposal, and Storage
Soils, Lake Bottom Sediments, Heavy Minerals7 Portable XRF Analysis7
Precious Metals Analysis8
Gold and Silver Analyses
Platinum Group Elements
Exploration Geochemistry9
Aqua Regia "Partial" Digestion
4-Acid "Near Total" Digestion
INAA
Multi-Method Analyses13
Pressed Pellet XRF13
Lithogeochemistry and Whole Rock Analysis14
Lithogeochemistry
Fusion XRF
Peroxide "Total" Fusion
Halogens
Mercury16 Miscellaneous Analyses16
Carbon/Sulphur Species, Acid Rock Drainage17
Carbon's Sulphur Species, Acid Rock Drainage
Acid Rock Drainage
Tools For Buried Deposit Targets
Selective Extractions
Sequential Leaches20
Spatiotemporal Geochemical Hydrocarbons (SGH)
Biogeochemistry
Ion Chromatography25
Miscellaneous Analyses25

Ore-Assays Assay Products for Miscellaneous Metals Concentrates Bullion Heavy Mineral Concentrates	
Concentrates Bullion	27
Bullion	
Heavy Mineral Concentrates	
Bauxite	
Chromite/PGE	
Coal	
Coltan	
Copper	
Graphite	
Industrial Minerals	
Iron Ore	
Lithium Ore	
Manganese Ore	
Nickel Laterite	
Potash	
Oil Shale	
Rate Earth Elements	
Uranium	
X-Ray Diffraction XRD Cluster Analysis LA-ICP-MS Electron Microprobe Analysis Metallurgical Services	37 38 38
Isotopic Analysis and Geochronology	39
Isotopic Analyses	
Geochronology	
Mine Site Services	40
Custom Mobile Sample Laboratories	40
	41
Mine Site Laboratory Services	
Mine Site Laboratory Services	41
Map	
Mine Site Laboratory Services	42
Mine Site Laboratory Services Terms and Conditions Map	42 42

Dr. Eric L. Hoffman

A Tribute to Dr. Eric Laurence Hoffman

Eric Laurence Hoffman, Ph.D, P.Geo, President and founder of Activation Laboratories Ltd. (Actlabs), passed away on July 10, 2015.

Eric was an economic geologist with over 30 years of experience in minerals exploration, analysis, and management. In 1974, he received his Bachelor of Science (Hons.) in Geology and his Masters of Science in Geology in 1975, both from McGill University. He received his Ph.D. in Geology from the University of Toronto in 1978 and became a registered Professional Geoscientist (P.Geo) in Ontario in 2002.

In 1978 at the young age of 35, he established Nuclear Activation Services Ltd., a partnership with McMaster University and the first commercial instrumental neutron activation laboratory in the world. In 1987,

Eric established Activation Laboratories Ltd. (Actlabs) Group of Companies with a focus on commercializing innovative technologies with the highest quality standards to the minerals, metallurgy, petroleum, life sciences, environmental, forensics, materials testing, and agriculture industries, achieving global success by building and running a company with 21 laboratories and 1000 employees in 10 countries. In 2014, Actlabs new 200,000 sq. ft. global headquarters was officially opened, a milestone for Actlabs growth and a symbol of how much he accomplished.

Eric received many honours and awards, including a 1971-72 JW McConnell Undergraduate Scholarship, a 1972-73 RPD Graham Undergraduate Scholarship; a 1973-74 Logan Undergraduate Scholarship; the 1974 Logan Gold Medal in Geology for Highest Standing and graduated with First Class Honours with Great Distinction; 1974-75, 1975-76, 1976-77, and 1977- 78 National Research Council of Canada Postgraduate Scholarships; 1978-79 and 1979-80 NRC Post-Doctoral Industrial Fellowships; a 2009 Canadian Innovation Leader award from Government of Canada, and the 2013 Gold Medal from the Association of Applied Geochemists. The AAG Gold Medal was awarded in recognition of Eric's career as an industry leader in bringing novel analytical techniques to commercial fruition. He anticipated the evolving needs of the applied geochemist through technique design and instrument modification for a wide variety of sample media – key to longer term success as exploration has moved into progressively more difficult concealed terranes.

Eric was greatly admired and deeply respected by all who knew him. He was an excellent businessman, a great innovator, a valuable contributor to the geochemistry community, a champion of geochemical research, and an icon of the Canadian mineral exploration scene. Eric published consistently throughout his career, was always in attendance at scientific meetings to present and promote the latest in techniques and instrumentation in geochemical exploration. In addition to his close work with industry, hundreds of research papers in the peer-reviewed literature bear the mark of Actlabs' contributions and Eric's direct input. He was a strong supporter and sponsor of collaborative industry-university research projects in Canada and abroad. He will be missed by all who interacted with him for his drive and energy.

The Actlabs Team is committed to carrying-on Eric's dream and ensuring the success of Actlabs. We've put in place plans to ensure that the company stays strong and thriving, especially through these depressed times in the industry. We will continue to provide industry leading high quality analyses and innovative technologies as this is what Eric would have wanted.

A Memorial Scholarship at the University of Toronto was established in his memory. This Earth Sciences graduate scholarship will be able to help future students advance a field that Eric was so passionate about.

We miss him a lot, but his memory will never be forgotten and his legacy will live forever.

Sample Packaging & Shipping Instructions

The following advice will help ensure your samples arrive at the lab safely and avoid processing delays:

- Please limit sample shipping bags to a maximum weight of 18kg or 40 lbs each for the health and safety of everyone handling the bags during shipping and receiving
- Clearly identify samples with a unique identification number or name using waterproof ink on the sample bags and/or sample tags in the sample bags
- Securely package all samples and place them in your shipping containers (e.g. bags, pails or boxes) in order
- Submit samples in an organized fashion to avoid extra sorting charges and help get them in process sooner
- Sealed plastic bags are best for shipping pulps
- If using pop top vials or glass bottles, ensure that they are taped shut and protected from breakage
- Fill out a Request for Analysis Form (available from www. actlabs.com) as completely as possible and submit it with each batch of samples. Include the carrier or shipment method and the waybill number on the form to allow us to track delayed shipments

Actlabs provides the following sampling supplies on request:

- Poly-weave shipping bags, heavy duty plastic sample bags, cable ties, and soil envelopes are available for a fee
- Complimentary shipping labels and sample tags

Quality Statement

Quality Assurance and Quality Control (QA/QC) is an integral aspect of our analyses and is a key component to Actlabs' vision, strategy and mission. Actlabs' Quality System monitors all steps and phases of our operations. Our Quality System outlines comprehensive details concerning our facilities, personnel qualifications, and processes used. Additionally, we are routinely audited by four regulatory agencies that focus on continual improvement. As a result, we continue to raise the bar with respect to the quality of our services in order to exceed their expectations and those of our clients.

Actlabs' Quality System is registered to international quality standards through the International Organization for Standardization / International Electrotechnical Commission (ISO/IEC) 17025:2017 (including ISO 9001:2015 and ISO 9002 specifications). Actlabs is accredited to the Standards Council of Canada (SCC) Requirements and Guidance for the Accreditation of Testing Laboratories, specific to mineral, forensic and environmental testing laboratories. The accreditation program includes ongoing audits which verify the Quality Management System and all applicable accredited test methods.

Report Formats

All reports and invoices will be emailed in PDF format and data sent in a digital format such as Excel or CSV to the email addresses that you specify on the Request for Analysis Form submitted with the samples. Custom report formats are also available so please contact us to discuss your specific requirements. Hard copies of reports or invoices are only available by special request and may incur additional cost.

- Clearly identify all shipping containers with your contact information, the destination address, and sequential number. Place hard-copies of the Request for Analysis (RFA) Form and a sample list in the first shipping container and email digital copies to your destination lab to help get your samples in process sooner and ensure the accuracy of the sample ids in your report. Actlabs' receiving locations and general email addresses are listed on page 44 (back cover)
- Before shipping soils or vegetation samples from outside Canada to Actlabs in Canada, contact us for specific labelling and shipping instructions to avoid border delays
- This is not an exhaustive list, so please contact us with any questions, or to discuss your project requirements, as we are happy to help

Turnaround Time

Actlabs defines Turnaround Time (TAT) as the time from receiving a batch of samples at our laboratory with clear identification and analysis instructions, until we report the analysis results to you.

Routine TAT for a batch of samples depends on the number of samples, the preparation and analysis methods required, and current laboratory workloads; therefore, TAT may be variable based on the sample batch and the time of year submitted. Also, excessively wet samples or undocumented and / or unorganized shipments may slow down TAT. Contact us for a TAT estimate based on your planned project specifics or when you submit a batch of samples.

Priority or Rush TAT may be available depending on current laboratory workloads. If you require analysis results by a certain date, contact us to discuss your requirements before submitting the samples so we can confirm availability and what price surcharge is applicable. Once we have agreed on an estimated rush TAT, your samples will be prioritised, we will make every effort to report your results as close as possible to the agreed due date, and the agreed price surcharge will be applied.

WebLIMS

Clients can track their sample status from reception through logging, preparation, analysis and reporting, and access their final analysis results on-line, via secure login to our WebLIMS system. Please contact customerservice@actlabs.com to establish a WebLIMS account for your project.

For International Samples into Canada - Waybill Instructions: Mineral Samples for Analysis, No Commercial Value. Value for Customs: US\$5.00. Canadian Customs Tariff (Harmonized Code) 2617.90.00.00. Customs Broker: Thompson Ahern & Co Ltd.

Sample Preparation

Actlabs can advise on sample preparation methods to meet your project objectives. The selection of appropriate sample preparation methods and the quality of the process is critical for obtaining meaningful analytical results. Our standard preparation methods provide industry-leading quality through finer, more consistent, crushing; using mild-steel mills which do not introduce Cr or Ni; cleaning the pulveriser bowl with cleaner sand after each sample; and monitoring that crushing and pulverising particle size specifications are met. These steps provide more representative sub-samples and eliminate potential sample contamination for more accurate results.

Actlabs has implemented custom-designed robotic rock and core sample preparation that replicates and augments our manual sample preparation methods and provides the same quality with increased productivity and improved safety.

Our Sample Preparation pricing is all-inclusive including sorting, drying, labeling, crushing samples up to 7 kg, new reject bags, and sand cleaning of the pulveriser after each sample for peace of mind in budgeting and data quality.

	Rock, Core and Drill Cuttings	
Code	Description	Price
RX1	Dry, crush (< 7 kg) up to 80% passing 2 mm, riffle split (250 g) and pulverize (mild steel) to 95% passing 105 μm	\$13.75
RX1-RTRN	Dry, crush (< 7 kg) up to 80% passing 2 mm, riffle split (250 g) and pulverize (mild steel) to 95% passing 105 μm. Supply and return processed crushed rock and pulverized material to client.	\$14.00
RX1-ORE	Dry, crush up to 90% passing 2 mm	add \$2.50
RX1+500	500 grams pulverized	add \$1.50
RX1+800	800 grams pulverized	add \$2.50
RX1+1000	1000 grams pulverized	add \$3.25
RX1-SD	Dry, crush (< 7 kg) up to 80% passing 2 mm, rotary split (250 g) and pulverized (mild steel) to 95% passing 105µm	\$13.75
RX1-SD-ORE	Dry, crush up to 90% passing 2 mm	add \$2.50
RX3	Oversize charge per kilogram for crushing	\$1.50
RX4	Pulverization only (mild steel) (coarse pulp or crushed rock) (< 800 g)	\$8.50
RX4-S250	Riffle split 250g and pulverize (mild steel) to 95% passing 105 μm	\$9.50
RX4-S500	Riffle split 500g and pulverize (mild steel) to 95% passing 105 μm	\$10.75
RX4-S1000	Riffle split 1000g and pulverize (mild steel) to 95% passing 105 μm	\$12.00
RX5	Pulverize ceramic (100 g)	\$23.25
RX6	Hand pulverize small samples (agate mortar & pestle) (<5g)	\$23.25
RX7	Dry, crush (<7 kg) and split (500g)	\$7.50
RX8	Sample prep only surcharge, no analyses	\$6.50
RX9	Compositing (per composite) dry weight	\$5.25
RX10	Weight (kg) as received	\$2.50
RX11	Checking quality of pulps or rejects prepared by other labs and issuing report	\$12.50
RX14	Core cutting	On Request
RX15	Special Preparation/Hour	\$86.50
RX16	Specific Gravity on Core	\$18.25
RX16-W	Specific Gravity (WAX) on friable samples	\$26.00
RX17	Specific Gravity on the pulp	\$19.25
RX17-GP	Specific Gravity on the pulp by gas pycnometer	\$20.50
RX18	Subsample split for 3rd party (up to 1kg)	\$3.75

Notes: Larger sample sizes than listed above can be pulverized at additional cost.

Code RX1-ORE is recommended for highly mineralised samples, providing finer crushing for a more representative sub-sample

Request code RX7 for preparation of samples requiring PhotonAssay analysis.

5

Sample Preparation Packages

Humus and Vegetation						
Code	Description	Price				
B1	Drying and blending humus	\$6.75				
B2	Drying and macerating vegetation	\$10.75				
B3	Dry ashing	\$13.00				
B4	Washing vegetation	\$6.25				
B5	Samples submitted in plastic bags, add	\$2.75				
Special Digestion Procedures						
MDI	Microwave digestion - closed vessel	On Request				

Sample Return, Disposal, and Storage

Please indicate on your Request for Analysis Form if your samples should be returned, disposed, or stored after analysis. Material is stored free of charge for a limited time after the date the final report is issued. If no instructions are received for sample return or storage, Actlabs reserves the right to dispose of the material after 3 months and disposal charges will apply. Material stored long-term will be subject to storage charges, billed quarterly. For returns, please include all necessary shipping information e.g., courier, account number, etc.

Irradiated material will be discarded 30 days after analysis unless prior arrangements are made. Return of radioactive material requires a Nuclear Safety Commission license. The cost per shipment of radioactive materials is \$200.00 plus shipping costs.

Code	Description	Price				
H&R	Handling and retrieval of stored sample material	\$70.00 / hour				
RTRN	Shipping cost (only if shipped on Actlabs account)	Cost + 15%				
DISP1	Disposal of pulps to landfill site, per sample	\$0.40				
DISP2	Disposal of reject to landfill site, per sample	\$1.25				
INCIN	INCIN Incineration of soil, sediment and vegetation samples from outside Canada for samples up to 0.5 kg, per sample					
	Additional charge for samples >0.5 kg	\$0.35 / kg				
STORE 1	Monthly storage of rejects after 60 days, per sample	\$0.70				
STORE 2	Monthly storage of pulps after 90 days, per sample	\$0.35				
STORE 3	Monthly storage of sieve rejects after 90 days, per sample	\$0.35				

Sample Preparation

Soils, Stream and Lake Bottom Sediments, and Heavy Minerals						
Code	Code Description					
S1	Drying (60°C) and sieving (-177 $\mu m)$ save all portions	\$5.25				
S1 DIS	Drying (60°C) and sieving (-177 $\mu m),$ discard oversize	\$5.25				
S1-230	Drying (60°C) and sieving (-63 μm), save oversize	\$6.75				
S1-230 DIS	Drying (60°C) and sieving (-63 μm), discard oversize	\$6.25				
S2	Lake bottom sediment preparation crush & sieve (-177 µm)	\$10.50				
\$3	Alternate size fractions and bracket sieving, add	\$3.50				
S4	Selective Extractions drying (40°C) & sieving (-177 µm)	\$5.25				
SGH-1	SGH drying (40°C) & sieving (-177 μm)	\$5.25				
S5	Wet or damp samples submitted in plastic bags, add	\$2.50				
S8	Sieve analysis (4 sieve sizes) coarser than 53 μm	\$91.75				
S9	Particle size analysis (laser)	On Request				

Portable XRF Analysis of Pulverised Samples

Portable XRF (pXRF) analysis of pulverised samples provides rapid, cost-effective, semi-quantitative results to assist with timely decisions in the field while traditional lab analyses are completed and can augment 4-acid digestion data to assist with rock characterisation.

pXRF analysis is extremely susceptible to sample matrix effects so for optimal accuracy of pXRF data, contact us to discuss project specific calibration and matrix matched Certified Reference Materials (CRMs).

These packages are only available when other multi-element analysis is requested on the same sample. Contact us to request additional elements or custom packages.

Analysis by pXRF requires 15g of pulverised sample but is nondestructive so the material can be used for additional analyses if needed.

Code	pXRF-1: For mineralised samples	Code pXRF-2: For non-mineralised samples		
	Detection Limit	Element	Detection Limit	
As	50 - 20,000 ppm	AI	0.5 - 10 %	
Ca	0.5 - 10 %	Ва	100 - 50,000 ppm	
Co	100 - 20,000 ppm	Fe	0.5 - 35 %	
Cr	100 - 50,000 ppm	к	0.3 - 10 %	
Cu	50 - 50,000 ppm	Mn	0.1 - 10 %	
Fe	0.5 - 35 %	Р	0.3 - 5 %	
Mn	100 - 100,000 ppm	Si	0.5 - 35 %	
Мо	100 - 50,000 ppm	Sr	100 - 10,000 ppm	
Ni	50 - 50,000 ppm	Ті	0.1 - 10 %	
Pb	50 - 50,000 ppm	v	100 - 10,000 ppm	
S	0.1 - 10 %	Y	50 - 10,000 ppm	
Zn	50 - 50,000 ppm	Zr	50 - 10,000 ppm	
Price:	\$9.35	Price	\$9.35	

7

Precious Metals Analysis

Gold and Silver Analyses - Geochem								
Code	Method	Sample Weight (g)	Metric Range (ppb)	Price				
1A1	Au Fire Assay – INAA	30	1 - 20,000	\$26.75				
1A2	Au Fire Assay – AA	30	5 - 5,000	\$21.50				
1A2B-30	Au Fire Assay – AA	30	5 - 10,000	\$22.00				
1A2-50	Au Fire Assay – AA	50	5 - 5,000	\$24.75				
1A2B-50	Au Fire Assay – AA	50	5 - 10,000	\$25.75				
1A2-ORE	Ore Grade - Au Fire Assay – AA	30	0.01 – 100 ppm	\$24.25				
1A2-50-ORE	Ore Grade - Au Fire Assay – AA	50	0.01 – 100 ppm	\$28.50				
1A2-ICP	Au Fire Assay – ICP-OES	30	2 - 30,000	\$22.75				
1A2-ICP-50	Au Fire Assay – ICP-OES	50	2 - 30,000	\$26.00				
1A2-ICPMS	Au Fire Assay - ICP-MS	30	0.5 - 30,000	\$31.00				
1A6	Au BLEG - ICP-MS	1,000	0.1 - 10,000	\$52.75				
1A6-50	Au Cyanide Extraction - ICP-MS Ag or Cu add-on, for each additional, add	50	0.02 - 1,000	\$17.00 \$6.25				
1A8-Au	Au Aqua Regia - ICP-MS	30	0.5 - 2,000	\$23.75				
1E-Ag	Ag Aqua Regia - ICP-OES	0.5	0.2 - 100 ppm	\$9.25				

For codes 1A6 and 1A6-50 with less than 5 and 15 samples, respectively, a \$250.00 setup charge will apply.

Use of 50g sample for fire assay may not provide optimum recovery.

For proper fire assay fusion, Actlabs may reduce the sample weights to 15g or smaller at its discretion

Gold and Silver Analyses - Assay									
Code	Method	Sample Weight (g)	Metric Range (g/t)	Price					
1A3-30	Au Fire Assay - Gravimetric	30	0.03 - 10,000	\$28.00					
1A3-50	Au Fire Assay - Gravimetric	50	0.02 - 10,000	\$31.25					
1A3-Ag (Au, Ag)	Au, Ag Fire Assay - Gravimetric	30	0.03 - 10,000 (Au) 3 - 10,000 (Ag)	\$35.75					
1A4 *	Au Fire Assay - Metallic Screen	500	0.03 - 10,000	\$86.50					
1A4-1000 *	Au Fire Assay - Metallic Screen	1,000	0.03 - 10,000	\$98.50					
8-Ag	Ag Fire Assay – Gravimetric	30	3 - 10,000	\$31.25					

* A representative 500 gram or 1000 gram (or customized) sample split is sieved at 149µm, with assays performed on the entire +149 µm fraction and two splits of the -149 µm fraction. It is important not to over pulverize the sample too finely as tests have shown gold will plate out on the mill and be lost. When assays have been completed on the coarse and fine portions of the bulk sample, a final assay is calculated based on the weight of each fraction.

Gold, Platinum, Palladium and Rhodium

	Sample	Range (ppb)				
Method	Weight (g)	Au	Pt	Pd	Rh	Price
Fire Assay - ICP-MS	30	2 - 30,000	1 - 30,000	1 - 30,000	-	\$30.25
Fire Assay - ICP-MS	30	1 - 30,000	0.1 - 30,000	0.1 - 30,000	-	\$39.25
Fire Assay - ICP-MS	30	-	-	-	5 - 10,000	\$38.75
Fire Assay - ICP-MS	30	-	-	-	1 - 10,000	\$48.75
Fire Assay - ICP-OES	30	2 - 30,000	5 - 30,000	5 - 30,000	-	\$25.75
Fire Assay - ICP-OES	30	0.06 - 1000 g/t	0.01 - 1000 g/t	0.01 - 1000 g/t	-	\$43.25
	Fire Assay - ICP-MS Fire Assay - ICP-MS Fire Assay - ICP-MS Fire Assay - ICP-MS Fire Assay - ICP-OES	Fire Assay - ICP-MS30Fire Assay - ICP-MS30Fire Assay - ICP-MS30Fire Assay - ICP-MS30Fire Assay - ICP-OES30	MethodWeight (g)AuFire Assay - ICP-MS302 - 30,000Fire Assay - ICP-MS301 - 30,000Fire Assay - ICP-MS30-Fire Assay - ICP-MS30-Fire Assay - ICP-MS302 - 30,000	Sample Weight (g) Au Pt Fire Assay - ICP-MS 30 2 - 30,000 1 - 30,000 Fire Assay - ICP-MS 30 1 - 30,000 0.1 - 30,000 Fire Assay - ICP-MS 30 - - Fire Assay - ICP-MS 30 - -	Sample Weight (g) Au Pt Pd Fire Assay - ICP-MS 30 2 - 30,000 1 - 30,000 1 - 30,000 Fire Assay - ICP-MS 30 1 - 30,000 0.1 - 30,000 0.1 - 30,000 Fire Assay - ICP-MS 30 - - - Fire Assay - ICP-MS 30 - - -	Sample Weight (g) Au Pt Pd Rh Fire Assay - ICP-MS 30 2 - 30,000 1 - 30,000 1 - 30,000 - Fire Assay - ICP-MS 30 1 - 30,000 0.1 - 30,000 0.1 - 30,000 - Fire Assay - ICP-MS 30 1 - 30,000 0.1 - 30,000 5 - 10,000 - Fire Assay - ICP-MS 30 - - 5 - 10,000 - Fire Assay - ICP-MS 30 - - 1 - 10,000 - Fire Assay - ICP-MS 30 2 - 30,000 5 - 30,000 5 - 30,000 -

* If >1000g/t use method code 8-Au, Pt, Pd (see Concentrate Testing on page 28)

Platinum Group Elements

		Sample				Range (ppb)						
Code	Method	Weight (g)	Os	Ir	Ru	Rh	Pt	Pd	Au	Price		
1B1	NiS Fire Assay - INAA	30	2-20,000	0.1-10,000	5-50,000	0.2-20,000	5*-100,000	2-100,000	0.5-20,000	1-2 samples \$415.00 3+ samples \$209.00		
1B2	NiS Fire Assay - ICP-MS	30	-	1-10,000	1-10,000	1-10,000	1-10,000	1-10,000	1-10,000	1-2 samples \$413.00 3+ samples \$207.00		

* Detection limits for Pt are increased with high Au/Pt ratios and limits for other elements will be affected by abnormally high Au, Sb and Cu content. Samples with high Au can be reanalyzed by Code 1C-Exploration or 1C-Research. Zn concentrates are not amenable to the nickel sulphide fire assay. Au results by Code 1B1 or 1B2 can be low by nickel sulphide fire assay. For accurate Au values, please request Code 1C-Exploration.

When submitting samples for precious metals analysis, please provide at least 2-3 times the listed sample weight to allow for quality control analysis

PhotonAssay™							
Sample Code Weight (g) Range (ppm) Pric							
PhotonAssay	500	(Au) 0.03 – 350	\$25.75				

* The presence of interfering elements such as Th, U and/or Ba in the sample matrix may increase the detection limit and decrease the precision.

Exploration Geochemistry

Aqua Regia "Partial" Digestion

This digestion uses a combination of concentrated hydrochloric and nitric acids to leach sulphides, some oxides and some silicates. Mineral phases which are hardly (if at all) attacked include barite, zircon, monazite, sphene, chromite, gahnite, garnet, ilmenite, rutile and cassiterite. The balance of silicates and oxides are only slightly to moderately attacked, depending on the degree of alteration. Generally, but not always, most base metals and gold are usually dissolved.

Note: Results from acid digestions may be lab dependent or lab operator dependent. Actlabs has automated this aspect of digestion using a microprocessor designed hotbox to accurately reproduce digestion conditions every time.

Note: For Code Ultratrace 1, Code Ultratrace 2 and Code UT-1M, Au is semi-quantitative when using a 0.5g sample.

15g or 30g is recommend for soils, sediments and vegetation samples only.

Packages that involve 15g and 30g sample size will require RX10 (pulp weight report)

	ICP- (pp	OES om)	ICP (pp	-MS om)	ICP-OES + ICP-MS (ppm)
Package	1E	1E3	UT-1M	Ultratrace 1	Ultratrace 2
Ag	0.2 - 100	0.2 - 100	0.1 - 100	0.002 - 100	0.002 - 100
Al	-	0.01 - 10 %	0.01 - 8 %	0.01 - 8 %	0.01 - 8 %
As	-	2 - 10,000	0.5 - 10,000	0.1 - 10,000	0.1 - 10,000
Au B	-	- 10 - 10,000	0.5 - 1,000 ppb 20 - 2,000	0.5 - 10,000 ppb 1 - 5,000	0.5 - 10,000 ppb 1 - 5,000
Ba	-	10 - 10,000	1 - 10,000	0.5 - 6,000	0.5 - 6,000
Be	-	0.5 - 1,000	-	0.1 - 1,000	0.1 - 1,000
Bi	-	2 - 10,000	0.1 - 2,000	0.02 - 2,000	0.02 - 2,000
Ca	-	0.01 - 10 %	0.01 - 50 %	0.01 - 50 %	0.01 - 50 %
Cd	0.5 - 2,000	0.5 - 2,000	0.1 - 2,000	0.01 - 2,000	0.01 - 1,000
Ce	-	-	-	0.01 - 10,000	0.01 - 10,000
Co Cr	-	1 - 10,000 1 - 10,000	0.1 - 5,000 1 - 10,000	0.1 - 5,000 1 - 10,000	0.1 - 5,000
CI	-	-	-	0.02 - 500	1 - 10,000 0.02 - 500
Cu	1 - 10,000	1 - 10,000	0.2 - 10,000	0.2 - 10,000	0.2 - 10,000
Dy	-	-	-	0.1 - 1,000	0.1 - 1,000
Er	-	-	-	0.1 - 1,000	0.1
Eu	-	-	-	0.1 - 100	0.1
Fe	-	0.01 - 30 %	0.01 - 30 %	0.01 - 30 %	0.01 - 30 %
Ga	-	10 - 10,000	1 - 1,000	0.02 - 500	0.02 - 500
Gd Ge	-	-	-	0.1 - 1,000 0.1 - 500	0.1 - 1,000 0.1 - 500
Hf	-	-	-	0.1 - 500	0.1 - 500
Hg	1 - 10,000	1 - 10,000	0.01 - 50	10 - 10,000ppb	10 - 10,000 ppb
Ho	-	-	-	0.1 - 1,000	0.1 - 1,000
In	-	-	-	0.02 - 500	0.02 - 500
К	-	0.01 - 10 %	0.01 - 5 %	0.01 - 5 %	0.01 - 5 %
La	-	10 - 10,000	1 - 10,000	0.5 - 10,000	0.5 - 1,000
Li	-	-	-	0.1 - 10,000	0.1 - 10,000
Lu Mg	-	- 0.01 - 25 %	- 0.01 - 10 %	0.1 - 100 0.01 - 10 %	0.1 - 100 0.01 - 10 %
Mn	2 - 100,000	5 - 100,000	1 - 10,000	1 - 10,000	1 - 10,000
Мо	2 - 10,000	1 - 10,000	0.1 - 10,000	0.01 - 10,000	0.01 - 10,000
Na	-	0.001 - 10 %	0.001 - 5 %	0.001 - 5 %	0.001 - 5 %
Nb	-	-	-	0.1 - 500	0.1 - 500
Nd	-	-	-	0.02 -5,000	0.02 - 5,000
Ni	1 - 10,000	1 - 10,000	0.1 - 10,000	0.1 - 10,000	0.1 - 10,000
P Pb	- 2 - 5,000	0.001 - 5 % 2 - 5,000	0.001 - 5 % 0.1 - 5,000	0.001 - 5 % 0.1 - 5,000	0.001 - 5 % 0.1 - 5,000
Pr	2 - 5,000	-	-	0.1 - 1,000	0.1 - 1,000
Rb	-	-	-	0.1 - 500	0.1 - 500
Re	-	-	-	0.001 - 100	0.001 - 100
S +	0.01 - 10 %	0.01 - 10 %	0.25 - 20 %	0.25 - 20 %	0.001 - 10 %
Sb	-	2 - 10,000	0.1 - 500	0.02 - 500	0.02 - 500
Sc	-	1 - 10,000	0.1 - 10,000	0.1 - 10,000	0.1 - 10,000
Se Sm	-	-	0.5 - 10,000	0.1 - 10,000 0.1 - 100	0.1 - 10,000 0.1 - 100
Sn	-	-	-	0.05 - 200	0.05 - 200
Sr	-	1 - 10,000	1 - 5,000	0.5 - 5,000	0.5 - 5,000
Та	-	-	-	0.05 - 50	0.05 - 50
Tb	-	-	-	0.1 - 100	0.1 - 100
Te	-	1 - 500	0.2 - 500	0.02 - 500	0.02 - 500
Th	-	20 - 10,000	0.1 - 200	0.1 - 200	0.1 - 200
Ti Tl	-	0.01 - 10 % 2 - 10,000	0.001 - 10 % 0.1 - 500	0.001 - 10 % 0.02 - 500	0.01 - 10 % 0.02 - 500
Tm	-	2 - 10,000	-	0.02 - 500	0.02 - 500
U	-	10 - 10,000	-	0.1 - 10,000	0.1 - 10,000
V	-	1 - 10,000	2 - 1,000	1 - 1,000	1 - 1,000
W	-	10 - 200	0.1 - 200	0.1 - 200	0.1 - 200
Y	-	1 - 1,000	-	0.01 - 500	0.01 - 500
Yb	-	-	-	0.1 - 200	0.1 - 200
Zn Zr	1 - 10,000	2 - 10,000	1 - 5,000	0.1 - 5,000	0.1 - 5,000
Zr 0.5g Price:	- \$15.25	1 - 10,000 \$16.00	- \$24.75	0.1- 5,000 \$28.00	0.1 - 5,000 \$33.25
-0.5g Price:	φ1 3. 20	15g Price:	\$35.75	\$37.75	400.20
		30g Price:	\$40.00	\$41.00	
		Jog Frice.			mmended (see page 8)

If Ag is >50ppm, assay by code 8-Ag is recommended (see page 8) Extraction of each element by Aqua Regia is dependent on mineralogy + Sulphide sulphur and soluble sulphates are extracted

Exploration Geochemistry

4-Acid "Near Total" Digestion

This acid attack is the most vigorous digestion used in geochemistry analysis and uses hydrochloric, nitric, perchloric and hydrofluoric acids. Even with this digestion, certain minerals (barite, gahnite, chromite, cassiterite, etc.) may only be partially dissolved or stable in solution. Other minerals including zircon, sphene and magnetite may not be totally dissolved. Most other silicates will be dissolved; however, some elements will be erratically volatilized, including As, Sb, Cr, U and Au.

Near-Total digestion cannot be used to obtain accurate determinations of REE, Ta, Nb, As, Sb, Sn, Hg, Cr, Au and U.

	ICP-OES (ppm)	ICP-N	IS (ppm)	ICP-OES + ICI	P-MS (nnm)
Package	1F2	UT-4M	Ultratrace 4	Ultratrace 6	UT-6M
Ag	0.3 - 100	0.1 - 100	0.05 - 100	0.3 - 100	0.01 - 100
Al	0.01 - 50 %	0.01 - 20 %	0.01 - 10 %	0.1 - 50 %	0.01 - 50 %
As	3 - 5,000	1 - 10,000	0.1 - 10,000	0.1 - 10,000	0.2 - 10,000
Ba	7 - 1,000	1 - 10,000	1 - 5,000	1 - 5,000	10 - 10,000
Be	1 - 10,000	1 - 1,000	0.1 - 1,000	0.1 - 1,000	0.05 - 1,000
Bi	2 - 10,000	0.1 - 4,000	0.02 - 2,000	0.02 - 2,000	0.01 - 10,000
Ca	0.01 - 70 %	0.01 - 40 %	0.01 - 50 %	0.01 - 50 %	0.01 - 50 %
Cd	0.3 - 2,000	0.1 - 4,000	0.1 - 1,000	0.3 - 2,000	0.02 - 1,000
Ce	-	1 - 2,000	0.1 - 10,000	0.1 - 10,000	0.01 - 500
Co	1 - 10,000	0.2 - 4,000	0.1 - 500	1 - 10,000	0.1 - 10,000
Cr	1 - 10,000	1 - 10,000	1 - 5,000	1 - 5,000	1 - 10,000
Cs	-	0.1 - 10,000	0.05 - 100	0.05 - 100	0.05 - 500
Cu	1 - 10,000	0.1 - 10,000	0.2 - 10,000	1 - 10,000	0.2 - 10,000
Dy	-	-	0.1 - 5000	0.1 - 5,000	-
Er	-	-	0.1 - 1,000	0.1 - 1,000	-
Eu	-	-	0.05 - 100	0.05 - 100	-
Fe	0.01 - 50 %	0.01 - 60 %	0.01 - 50 %	0.01 - 50 %	0.01 - 50 %
Ga	1 - 10,000	-	0.1 - 500	0.1 - 500	0.05 - 10,000
Gd	-	-	0.1 - 5,000	0.1 - 5,000	-
Ge	-	-	0.1 - 500	0.1 - 500	0.05 - 500
Hf	-	0.1 - 1,000	0.1 - 500	0.1 - 500	0.1 - 500
Ho	-	-	0.1 - 1,000	0.1 - 1,000	-
In	-	-	0.1 - 100	0.1 - 100	0.005 - 500
К	0.01 - 10 %	0.01 - 10 %	0.01 - 5 %	0.01 - 5 %	0.01 - 10 %
La	-	0.1 - 2,000	0.1 - 10,000	0.1 - 10,000	0.5 - 10,000
Li	1 - 10,000	0.1 - 2,000	0.5 - 400	1 - 10,000	1 - 10,000
Lu	-	-	0.1 - 100	0.1 - 100	-
Mg	0.01 - 50 %	0.01 - 30 %	0.01 - 50 %	0.01 - 50 %	0.01 - 50 %
Mn	5 - 100,000	1 - 10,000	1 - 10,000	1 - 10,000	5 - 100,000
Mo	1 - 10,000	0.1 - 4,000	0.05 - 10,000	1 - 10,000	0.05 - 10,000
Na	0.01 - 10 %	0.001 - 10 %	0.01 - 3 %	0.01 - 3 %	0.01 - 10 %
Nb	-	0.1 - 2,000	0.1 - 500	0.1 - 500	0.1 - 500
Nd Ni	- 1 - 10,000	- 0.1 - 10,000	0.1 - 10,000 0.5 - 5,000	0.1 - 10,000 1 - 10,000	- 0.2 - 10,000
P	0.001 - 10 %	0.001 - 5 %	0.5 - 5,000	0.001 - 10 %	10 - 10,000
Pb	3 - 5,000	0.1 - 5,000	0.5 - 5,000	3 - 5,000	0.5 - 10,000
Pr	-	-	0.1 - 5,000	0.1 - 1,000	0.5 10,000
Rb	-	0.1 - 2,000	0.2 - 500	0.2 - 5,000	0.1 - 10,000
Re	-	-	0.001 - 100	0.001 - 100	0.002 - 50
S +	0.01 - 20 %	0.3 - 10 %	-	0.01 - 20 %	0.01 - 10 %
Sb	5 - 10,000	0.1 - 4,000	0.1 - 500	0.1 - 500	0.05 - 10,000
Sc	4 - 10,000	1 - 200	-	1 - 5,000	0.1 - 10,000
Se	-	-	0.1 - 1,000	0.1 - 1,000	1 - 1,000
Sm	-	-	0.1 - 100	0.1 - 100	-
Sn	-	0.1 - 2,000	1 - 200	1-200	0.2 - 500
Sr	1 - 10,000	1 - 10,000	0.2 - 10,000	0.2 - 1,000	0.2 - 10,000
Та	-	0.1 - 2,000	0.1 - 1,000	0.1 - 1,000	0.05 - 100
Tb	-	-	0.1 - 100	0.1 - 100	-
Te	2 -10,000	-	0.1 - 500	0.1 - 500	0.05 - 500
Th	-	0.1 - 4,000	0.1 - 500	0.1 - 500	0.01 - 10,000
Ti	0.01 - 10 %	0.001 - 10 %	-	0.0005 - 10 %	0.005 - 10 %
TI	5 - 10,000	0.05 - 10,000	0.05 - 500	0.05 - 500	0.02 - 10,000
Tm	-	-	0.1 -1,000	0.1 - 1,000	-
U	10 - 10,000	0.1 - 4,000	0.1 - 10,000	0.1 - 10,000	0.1 - 10,000
V	2 - 10,000	4 - 10,000	1 - 10,000	1 - 10,000	1 - 10,000
W	5 - 10,000	0.1 - 200	0.1 - 200	0.1 - 200	0.1 - 10,000
Y	1 - 1,000	0.1 - 2,000	0.1 - 10,000	0.1 - 10,000	0.1 - 500
Yb	-	-	0.1 - 5,000	0.1 - 5,000	-
Zn	1 - 10,000	1 - 10,000	0.2 - 10,000	1 - 10,000	2 - 10,000
Zr	5 - 10,000	0.1 - 2,000	1 - 5,000	1 - 5,000	0.5 - 500
Price:	\$21.25	\$30.25	\$32.50	\$42.00	\$38.00

If Ag is >50ppm, assay by code 8-Ag is recommended (see page 8) Extraction of each element by 4-Acid Digestion is dependent on mineralogy + Sulphide sulphur and soluble sulphates are extracted

Intermediate Ore Grade

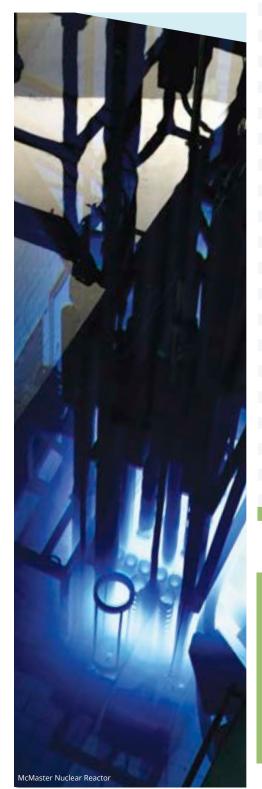
These packages are meant for mid-high level mineralized samples.

	Aqua Regia (ppm)	Four-Acid (ppm)
Package	1E3-ORE	1F2-ORE
Ag	2 - 200	3 - 200
AI	0.1 - 10 %	0.1 - 50 %
As	20 - 20,000	30 - 10,000
В	100 - 20,000	-
Ba	100 - 20,000	70 - 2,000
Be	5 - 2,000	10 - 20,000
Bi	20 - 20,000	20 - 20,000
Ca	0.1 - 10 %	0.1 - 70 %
Cd	5 - 4,000	3 - 4,000
Co	10 - 20,000	10 - 20,000
Cr	10 - 20,000	10 - 20,000
Cu	10 - 20,000	10 - 20,000
Fe	0.1 - 30 %	0.1 - 50 %
Ga	100 - 20,000	10 - 20,000
Hg	10 - 20,000	-
К	0.1 - 10 %	0.1 - 10 %
La	100 - 20,000	-
Li	-	10 - 20,000
Mg	0.002 - 25 %	0.1 - 50 %
Mn	50 - 100,000	10 - 100,000
Mo	10 - 20,000	10 - 20,000
Na	0.01 - 10 %	0.1 - 10 %
Ni	10 - 20,000	10 - 20,000
Р	0.01 - 5 %	0.01 - 10 %
Pb	20 - 10,000	30 - 10,000
S +	0.01 - 20 %	0.1 - 20 %
Sb	20 - 20,000	50 - 20,000
Sc	10 - 20,000	40 - 20,000
Sr	10 - 20,000	10 - 20,000
Te	10 - 1,000	100 -20,000
Th	40 - 20,000	-
Ti	0.1 - 10 %	0.1 - 10 %
TI	20 - 20,000	50 - 20,000
U	100 - 20,000	100 - 20,000
V	10 - 20,000	20 - 20,000
W	100 - 400	50 - 20,000
Y	10 - 2,000	10 - 2,000
Zn	20 - 20,000	10 - 20,000
Zr	10 - 20,000	50 - 20,000
Price:	\$31.75	\$38.50

Aqua Regia "Partial" Digestion

 This leach uses a combination of concentrated hydrochloric and nitric acids to leach sulphides, some oxides and some silicates.

4-Acid "Near Total" Digestion


 This acid attack is the most vigorous digestion used in geochemistry analysis and uses hydrochloric, nitric, perchloric and hydrofluoric acids.

> Extraction of each element by 4-Acid Digestion is dependent on mineralogy + Sulphide sulphur and soluble sulphates are extracted

Exploration Geochemistry

INAA

Instrumental Neutron Activation Analysis - Samples are encapsulated and irradiated in a nuclear reactor. After a suitable decay, samples are measured for the emitted gamma ray fingerprint. INAA is very good for Au, Co, As, Sb, W, Ta, U, Th, Cs, In, Re, Cl and lower levels of most LREE.

VIAA (ppn) VIAA (ppn) Package 10 1D Enhanced 58- Other Elements 55- Short Lived isotopes Ag 5 - 100,000 5 - 100,000 1 - 100,000 - Au 5 - 30,000 ppb 2 - 30,000 ppb 5 - 30,000 ppb - Ba 100 - 500,000 50 - 10,000 - - Ce 3 - 10,000 0.5 - 1,000 0.5 - 1,000 - Ca 1 - 50 % 1 - 50 % - - Ce 3 - 10,000 5 - 10,000 - - Ca 1 - 50 % 1 - 50,000 0.5 - 10,000 - Ca 3 - 10,000 5 - 10,000 - - Ca 3 - 0,000 1 - 100,000 - - Ca - 0,000 5 - 10,000 - - Ca - 0,000 5 - 10,000 - - Ca - 0,000 - - - Ca - 0,01 - 5,000 - - - Fe <t< th=""><th></th><th></th><th></th><th></th><th></th></t<>					
Ag 5 - 100,000 5 - 100,000 - - 1 - 100,000 Al - - - 1 - 100,000 - Au 5 - 30,000 ppb 2 - 30,000 ppb 5 - 30,000 ppb - - Ba 100 - 500,000 50 - 500,000 100 - 100,000 - - Ba 100 - 500,000 50 - 50,000 0.5 - 1,000 - - Ce 3 - 10,000 3 - 10,000 - - - Co 5 - 5,000 1 - 5,000 0.5 - 1,000 - - Co 5 - 5,000 1 - 5,000 0.5 - 1,000 - - Co 5 - 5,000 1 - 10,000 0.5 - 10,000 - - Cu -<					
A - - - 1 - 100,000 As 2 - 10,000 0.5 - 10,000 1 - 10,000 - Au 5 - 30,000 ppb 2 - 30,000 ppb 5 - 30,000 ppb - Ba 100 - 500,000 50 - 500,000 100 - 100,000 - Br 1 - 1000 0.5 - 1,000 3 - 10,000 - Ca 3 - 10,000 3 - 10,000 3 - 10,000 - Cb 3 - 10,000 3 - 10,000 - - Cc 3 - 10,000 5 - 100,000 - - Cc 3 - 10,000 5 - 100,000 - - Cc 3 - 10,000 5 - 100,000 - - Cc 3 - 10,000 1 - 10,000 - - Cu - - 0.5 - 5,000 - Cu - - - 0.5 - 5,000 - I 1 - 500 1 - 500 0.5 - 10,000 - - I 1 - 500 1 - 500 -	0			5B - Other Elements	55 - Short Lived Isotopes
As 2 - 10,000 0.5 - 10,000 1 - 10,000 - Au 5 - 30,000 ppb 2 - 30,000 ppb 5 - 30,000 ppb - Ba 100 - 500,000 50 - 500,000 100 - 100,000 - Br 1 - 1,000 0.5 - 1,000 0.5 - 1,000 - Ce 3 - 10,000 3 - 10,000 - - Ce 3 - 10,000 3 - 10,000 - - Ce 3 - 10,000 1 - 10,000 - - Ce 3 - 10,000 1 - 10,000 - - Ci - - 100 - 100,000 Cr 1 - 10,000 1 - 10,000 - - Cu - - - 0.5 - 5,000 Fe 0.02 - 75 % 0.01 - 75 % 0.01 - 75 % - Ga - - - 0.5 - 5,000 Ir - - - 0.1 - 5,000 Ir 5 - 10,000 0.5 - 10,000 - - Ir </td <td>-</td> <td>5 - 100,000</td> <td>5 - 100,000</td> <td>-</td> <td></td>	-	5 - 100,000	5 - 100,000	-	
Au 5 - 30,000 ppb 2 - 30,000 ppb 5 - 30,000 ppb - Ba 100 - 500,000 50 - 500,000 100 - 100,000 - Br 1 - 1,000 0.5 - 1,000 0.5 - 1,000 - Ca 3 - 10,000 3 - 10,000 3 - 10,000 - Co 5 - 5,000 1 - 5,000 3 - 10,000 - Cl - - 100 - 100,000 - Cl - - - 0.5 - 5,000 Cl - - 0.5 - 5,000 - Eu 0.2 - 2,000 0.2 - 2,000 - - Ga - - - 5 - 5,000 In - - - - - Ig 1 - 1,000 1 - 1,000 - - -		-	-	-	1 - 100,000
Ba 100 - 500,000 50 - 500,000 100 - 100,000 - Br 1 - 1,000 0.5 - 1,000 0.5 - 1,000 5 - 10,000 Ca 1 - 50 % 1 - 50 % - - Ce 3 - 10,000 3 - 10,000 - - Co 5 - 50,000 1 - 50,000 - - Cl - - 100 - 100,000 - Cl - - 0.5 - 5,000 - Cl - - 0.5 - 5,000 - Eu 0.2 - 2,000 0.2 - 2,000 0.2 - 3,000 - - Fe 0.02 - 75 % 0.01 - 75 % 0.01 - 75 % - - Ga - - - 0.5 - 5,000 - Ir - - - 0.5 - 5,000					-
Br 1 - 1,000 0.5 - 1,000 5 - 10,000 5 - 10,000 Ca 1 - 50 % 1 - 50 % - - Ca 3 - 10,000 3 - 10,000 - - Ca 5 - 5,000 1 - 5,000 0.5 - 10,000 - Ca - - - 100 - 100,000 Cr 10 - 100,000 5 - 10,000 1 - 10,000 - Cs 2 - 10,000 1 - 10,000 - - Cu - - - 5 - 2,500 Dy - - - 5 - 5,000 Eu 0.2 - 2,000 0.2 - 2,000 0.2 - 2,000 - Ga - - - 5 - 10,000 H 1 - 500 1 - 500 0.5 - 500 - I - - - 0.5 - 5,000 In - - - 0.1 - 5,000 In - - - 0.1 - 5,000 In - -<					-
Ca 1 - 50 % 1 - 50 % - - Ce 3 - 10,000 3 - 10,000 3 - 10,000 - - Co 5 - 5,000 1 - 5,000 0.5 - 10,000 - - CI - - 100 - 100,000 - - CI - - 5 - 2,500 - - Cu - - 5 - 2,500 - - Cu - - 5 - 2,500 - - Cu - - 0.5 - 5,000 - - Fe 0.02 - 75 % 0.01 - 75 % 0.01 - 75 % - - Ga - - - 0.5 - 5,000 - Hg 1 - 1,000 1 - 5,000 pb - - - La 1 - 10,000 0.5 - 10,000 pb - - - Mg - - - 0.05 - 50 % - - Mg - -<					-
Ce 3 - 10,000 3 - 10,000 3 - 10,000 Co 5 - 5,000 1 - 5,000 0.5 - 10,000 - 100 - 100,000 Cr 10 - 100,000 5 - 100,000 1 - 100,000 - 0.5 - 5,000 Cu - - - 5 - 2,500 Dy - - 0.5 - 5,000 Eu 0.2 - 2,000 0.2 - 2,000 0.2 - 2,000 Fe 0.0.2 - 75 % 0.01 - 75 % - Ga - - 5 - 10,000 Hf 1 - 500 1 - 500 0.5 - 500 - I - - 0.1 - 5,000 - I - - 0.5 - 5,000 - I - - 0.1 - 5,000 - I - - 0.1 - 5,000 - Ir 5 - 10,000 0.5 - 10,000 0.05 - 5,0% - Mg - - 0.05 - 50 % - Mg 0.5 - 10,000 1 -				0.5 - 1,000	5 - 10,000
Co 5 - 5,000 1 - 5,000 0.5 - 10,000 - CI - - - 100 - 100,000 - CS 2 - 10,000 5 - 10,000 0.5 - 10,000 - - Cu - - - 5 - 2,500 - Cu - - 0.5 - 5,000 - - Fe 0.02 - 75 % 0.01 - 75 % 0.01 - 75 % - - Ga - - - 5 - 10,000 - Hg 1 - 1,000 1 - 1,000 - - - - In - - - 0.1 - 5,000 - - In - - - 0.1 - 5,000 - - In - - - 0.1 - 5,000 - - In - - - 0.1 - 0,000 - - In - - - 0.05 - 5,000 - - - </td <td></td> <td></td> <td></td> <td>-</td> <td>-</td>				-	-
Cl - - 100-100,000 Cr 10-100,000 5-100,000 1-100,000 - Cs 2-10,000 1-10,000 0.5-10,000 - Cu - - 0.5-2,500 Dy - - 0.5-5,000 Eu 0.2-2,000 0.2-2,000 0.2-2,000 Fe 0.02-75% 0.01-75% 0.01-75% Ga - - 5-10,000 Hg 1-1,000 1-500 0.5-500 I - - 0.5-5,000 In - - 0.1-5,000 In - - 0.1-10,000 In - - 0.1-10,000 In 0.05-10,000 1-10,000 - In 0.0500		,			-
Cr 10 - 100,000 5 - 100,000 1 - 100,000 - Cu - - 5 - 2,500 Dy - - 0.5 - 5,000 Eu 0.2 - 2,000 0.2 - 2,000 0.2 - 2,000 - Ga - - 5 - 10,000 - Ga - - 5 - 10,000 - Hg 1 - 1,000 1 - 500 0.5 - 5000 - Hg 1 - 1,000 1 - 10,000 - - I - - 0.5 - 5,000 In - - 0.5 - 5,000 In - - 0.5 - 5,000 In - - 0.05 - 5,000 In - - 0.05 - 10,000 La 1 - 10,000 0.5 - 10,000 0.05 - 1,000 Lu 0.05 - 1,000 0.05 - 1,000 - Mg - - 0.1 - 10,000 Na 0.05 - 10,000 5 - 10,000 - Na<	Co	5 - 5,000	1 - 5,000	0.5 - 10,000	-
Cs 2 - 10,000 1 - 10,000 0.5 - 10,000 - Cu - - 0.5 - 2,500 Dy - - 0.5 - 5,000 Eu 0.2 - 2,000 0.2 - 2,000 0.2 - 2,000 - Fe 0.02 - 75 % 0.01 - 75 % 0.01 - 75 % - Ga - - - 5 - 10,000 Hf 1 - 500 1 - 500 0.5 - 500 - Hg 1 - 1,000 1 - 10,000 - - - I - - - - - - I - - - - - - II - - - - - - - III - - - - - - - - - IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Cl	-	-	-	100 -100,000
Cu - - 5 - 2,500 Dy - - 0.5 - 5,000 Eu 0.2 - 2,000 0.2 - 2,000 0.2 - 2,000 Fe 0.02 - 75 % 0.01 - 75 % 0.01 - 75 % Ga - - 5 - 10,000 Hg 1 - 1,000 1 - 500 0.5 - 500 - I - - 0.1 - 5,000 - In - - 0.5 - 5,000 - In - - 0.1 - 5,000 - In - - 0.5 - 5,000 - In - - 0.1 - 5,000 - In - - 0.5 - 5,000 - In - - 0.1 - 10,000 - - Lu 0.05 - 1,000 0.05 - 10,000 - - - Ma - - - - - - Na 0.05 - 10,000 5 - 10,000 - - <t< td=""><td>Cr</td><td>10 - 100,000</td><td>5 - 100,000</td><td>1 - 100,000</td><td>-</td></t<>	Cr	10 - 100,000	5 - 100,000	1 - 100,000	-
Dy - - - 0.5 - 5,000 Eu 0.2 - 2,000 0.2 - 2,000 0.2 - 2,000 - Fe 0.02 - 75 % 0.01 - 75 % 0.01 - 75 % - Ga - - 5 - 10,000 Hf 1 - 500 1 - 500 0.5 - 500 - I - - 0.1 - 5,000 - I - - 0.1 - 5,000 - In - - 0.1 - 5,000 - In - - 0.1 - 5,000 - In - - 0.05 - 5,000 - In - - 0.05 - 5,000 - In - - 0.05 - 5,000 - Mg - - 0.05 - 1,000 - - Mg - - 0.1 - 10,000 - - Na 0.05 - 10 % 0.01 - 10 % 100 - 100,000 - - - Na 0.05 - 10,000	Cs	2 - 10,000	1 - 10,000	0.5 - 10,000	-
Eu 0.2 - 2,000 0.2 - 2,000 0.2 - 2,000 - Fe 0.02 - 75 % 0.01 - 75 % 0.01 - 75 % - Ga - - - 5 - 10,000 Hg 1 - 1000 1 - 1000 - - - I - - - 0.5 - 5,000 In - - 0.1 - 5,000 In - - 0.1 - 5,000 Ir 5 - 10,000 ppb 5 - 10,000 0.5 - 50.00 Ir - - 0.01 - 5,000 La 1 - 10,000 0.5 - 10,000 0.05 - 1,000 - Lu 0.05 - 1,000 0.05 - 1,000 0.05 - 1,000 - - Mg - - 0.05 - 50.% - Mn - - 0.05 - 10,000 - Na 0.05 - 10,000 2 - 10,000 - - Na 0.05 - 10,000 5 - 10,000 - - Rb 30 - 10,000 1 -	Cu	-	-	-	5 - 2,500
Fe 0.02 - 75 % 0.01 - 75 % 0.01 - 75 % - Ga - - - 5 - 10,000 Hf 1 - 500 1 - 500 0.5 - 500 - Hg 1 - 1,000 1 - 1,000 - 0.1 I - - 0.5 - 5,000 In - - 0.1 - 10,000 Uu 0.05 - 10,000 0.5 - 10,000 - 0.05 - 10,000 Mn - - - 0.1 - 10,000 Ma 0.05 - 10,000 2 - 10,000 - 0.05 - 10,000 Ni 50 - 10,000 15 - 10,000 20 - 10,000 - Ni 50 - 10,000 0.1 - 10,000 20 - 10,000 - Sc 0.1 - 200 0.1 - 20,000 - - S	Dy	-	-	-	0.5 - 5,000
Fe 0.02 - 75 % 0.01 - 75 % 0.01 - 75 % - Ga - - - 5 - 10,000 Hg 1 - 500 1 - 500 0.5 - 500 - Hg 1 - 1,000 1 - 500 0.5 - 500 - I - - 0.5 - 5,000 In - - 0.1 - 10,000 Via 0.05 - 10,000 0.5 - 10,000 - - Lu 0.05 - 10,000 2 - 10,000 - 0.1 - 10,000 Mn - - - 0.1 - 10,000 Mo 5 - 10,000 1 - 10,000 2 - 10,000 - 0.1 - 10,000 Nd 5 - 10,000 5 - 10,000 2 - 10,000 - - So 3 - 10,000 1 - 10,000 2 - 10,000 - - St 0 - 1 - 0,000	2	0.2 - 2,000	0.2 - 2,000	0.2 - 2,000	-
Hf 1 - 500 1 - 500 0.5 - 500 - Hg 1 - 1,000 1 - 1,000 - 0.5 - 5,000 I - - 0.5 - 5,000 In - - 0.5 - 5,000 Ir 5 - 10,000 ppb 5 - 10,000 0.1 - 10,000 - La 1 - 10,000 0.5 - 10,000 0.05 - 1,000 - 0.05 - 10,000 Mg - - 0.01 - 10,000 - 0.01 - 10,000 Mg - - 0.1 - 10,000 - - Na 0.05 - 10,000 1 - 10,000 2 - 10,000 - - Na 0.05 - 10,000 0.1 - 10,000 - - - Na 0.10,000 0.1 - 10,000 0.1 - 10,000 - -	Fe	0.02 - 75 %	0.01 - 75 %	0.01 - 75 %	-
Hf 1 - 500 1 - 500 0.5 - 500 - Hg 1 - 1,000 1 - 1,000 - 0.5 - 5,000 I - - 0.5 - 5,000 In - - 0.5 - 5,000 Ir 5 - 10,000 ppb 5 - 10,000 0.1 - 10,000 - La 1 - 10,000 0.5 - 10,000 0.05 - 1,000 - 0.05 - 10,000 Mg - - 0.01 - 10,000 - 0.01 - 10,000 Mg - - 0.1 - 10,000 - - Na 0.05 - 10,000 1 - 10,000 2 - 10,000 - - Na 0.05 - 10,000 0.1 - 10,000 - - - Na 0.10,000 0.1 - 10,000 0.1 - 10,000 - -					5 - 10,000
Hg 1 - 1,000 1 - 1,000 - - I - - 0.5 - 5,000 In - - 0.1 - 5,000 Ir 5 - 10,000 ppb - - La 1 - 10,000 0.5 - 10,000 0.1 - 10,000 - Lu 0.05 - 1,000 0.05 - 1,000 0.05 - 1,000 - Mg - - 0.05 - 50 % Mn - - 0.05 - 50 % Mn - - 0.05 - 10,000 No 5 - 10,000 1 - 10,000 2 - 10,000 Na 0.05 - 10 % 0.01 - 10 % 100 - 100,000 Nd 5 - 10,000 5 - 10,000 - Ni 50 - 10,000 20 - 10,000 - Rb 30 - 10,000 0.1 - 10,000 0.1 - 200 Sc 0.1 - 200 0.1 - 200 - Sc 0.1 - 200 0.1 - 200 - Sr 0.1 - 40 % 0.05 - 40 % - Sr	Hf	1 - 500	1 - 500	0.5 - 500	-
I - - - 0.5 - 5,000 In - - 0.1 - 5,000 Ir 5 - 10,000 ppb 5 - 10,000 p0b - - La 1 - 10,000 0.5 - 10,000 0.05 - 1,000 - Lu 0.05 - 1,000 0.05 - 1,000 0.05 - 1,000 - Mg - - 0.05 - 50 % Mn - - 0.05 - 0,000 Mo 5 - 10,000 1 - 10,000 2 - 10,000 - Na 0.05 - 10,000 1 - 10,000 2 - 10,000 - Nd 5 - 10,000 5 - 10,000 5 - 10,000 - Ni 50 - 10,000 20 - 10,000 - - Rb 30 - 10,000 15 - 10,000 20 - 10,000 - - Sc 0.1 - 200 0.1 - 200 0.1 - 200 - - Sc 0.1 - 200 0.1 - 10,000 0.1 - 10,000 - - Sm 0.1 - 10,000 0.5 - 10,000 0.1 - 10,000 <td>Hg</td> <td>1 - 1.000</td> <td>1 - 1.000</td> <td>-</td> <td>-</td>	Hg	1 - 1.000	1 - 1.000	-	-
In - - 0.1 - 5,000 Ir 5 - 10,000 ppb 5 - 10,000 0.1 - 10,000 - La 1 - 10,000 0.5 - 1,000 0.05 - 1,000 - Lu 0.05 - 1,000 0.05 - 1,000 0.05 - 1,000 - Mg - - 0.1 - 10,000 - Mg - - 0.05 - 50 % Mn - - 0.1 - 10,000 Na 0.05 - 10 % 0.01 - 10 % 100 - 100,000 50 - 200,000 Nd 5 - 10,000 5 - 10,000 - - - Ni 50 - 10,000 20 - 10,000 - - - Rb 30 - 10,000 15 - 10,000 20 - 10,000 - - Re - - - 1 - 5,000 - Sc 0.1 - 200 0.1 - 200 0.1 - 200 - - Sc 0.1 - 10,000 0.1 - 10,000 - - - Sr 0.1 - 40 % 0.05	0	-	-	-	0.5 - 5.000
Ir 5 - 10,000 ppb 5 - 10,000 0.1 - 10,000 - La 1 - 10,000 0.05 - 10,000 0.05 - 1,000 - Mg - - 0.05 - 50 % Mn - - 0.1 - 10,000 Na 0.05 - 10,000 1 - 10,000 2 - 10,000 - Na 0.05 - 10,000 1 - 10,000 2 - 10,000 - Na 0.05 - 10,000 5 - 10,000 5 - 200,000 - Na 0.05 - 10,000 5 - 10,000 5 - 200,000 - Ni 50 - 10,000 20 - 10,000 - - - Ni 50 - 10,000 20 - 10,000 - - - Re - - - - - - Sc 0.1 - 200 0.1 - 200 0.1 - 200 -			-	-	
La 1 - 10,000 0.5 - 10,000 0.1 - 10,000 - Lu 0.05 - 1,000 0.05 - 1,000 0.05 - 1,000 - Mg - - 0.05 - 50 % Mn - - 0.1 - 10,000 Mo 5 - 10,000 1 - 10,000 2 - 10,000 - Na 0.05 - 10 % 0.01 - 10 % 100 - 100,000 50 - 200,000 Nd 5 - 10,000 5 - 10,000 5 - 10,000 - - Ni 50 - 10,000 20 - 10,000 - - - Rb 30 - 10,000 15 - 10,000 20 - 10,000 - - Re - - - 1 - 5,000 - Sc 0.1 - 200 0.1 - 200 0.1 - 200 - - Sm 0.1 - 10,000 0.1 - 10,000 2 - 10,000 - - Sr 0.1 - 40 % 0.05 - 40 % - - - Sr 0.1 - 40 % 0.05 - 10,000 - - -<		5 - 10.000 ppb	5 - 10.000 ppb		-
Lu 0.05 - 1,000 0.05 - 1,000 0.05 - 1,000 - Mg - - 0.05 - 50 % Mn - - 0.1 - 10,000 Mo 5 - 10,000 1 - 10,000 2 - 10,000 - Na 0.05 - 10 % 0.01 - 10 % 100 - 10,000 50 - 200,000 Nd 5 - 10,000 5 - 10,000 5 - 10,000 - Ni 50 - 10,000 20 - 10,000 - - Rb 30 - 10,000 15 - 10,000 20 - 10,000 - - Re - - 1 - 5,000 - - Sb 0.2 - 10,000 0.1 - 10,000 0.1 - 200 - - Sc 0.1 - 200 0.1 - 200 0.1 - 200 - - Sc 0.1 - 0,000 3 - 10,000 0.01 - 10,000 - - Sn 0.05 - 10 % - - - - Sr 0.1 - 40 % 0.05 - 10,000 0.5 - 10,000 - -				0.1 - 10.000	-
Mg - - - 0.05 - 50 % Mn - - 0.1 - 10,000 Mo 5 - 10,000 1 - 10,000 2 - 10,000 - Na 0.05 - 10 % 0.01 - 10 % 100 - 100,000 50 - 200,000 Nd 5 - 10,000 5 - 10,000 5 - 10,000 - Ni 50 - 10,000 20 - 10,000 - - Rb 30 - 10,000 20 - 10,000 - - Re - - 1 - 5,000 - Sb 0.2 - 10,000 0.1 - 10,000 0.1 - 200 - Sc 0.1 - 200 0.1 - 200 - - Sc 0.1 - 200 0.1 - 200 - - Sm 0.05 - 10,000 0.1 - 10,000 - - Sm 0.05 - 10 % 0.02 - 10 % - - Sr 0.1 - 40 % 0.05 - 40 % - - Ta 1 - 10,000 0.5 - 10,000 0.2 - 10,000 - - <td></td> <td>,</td> <td></td> <td>,</td> <td></td>		,		,	
Mn - - - 0.1 - 10,000 Mo 5 - 10,000 1 - 10,000 2 - 10,000 - Na 0.05 - 10 % 0.01 - 10 % 100 - 100,000 50 - 200,000 Nd 5 - 10,000 5 - 10,000 - - Ni 50 - 10,000 20 - 10,000 - - Rb 30 - 10,000 15 - 10,000 20 - 10,000 - - Re - - 1 - 5,000 - - Sb 0.2 - 10,000 0.1 - 10,000 0.1 - 200 - - Sc 0.1 - 200 0.1 - 200 - - - - Se 5 - 10,000 3 - 10,000 0.01 - 10,000 - - - Sm 0.05 - 10,000 0.1 - 10,000 0.01 - 10,000 - - - Sr 0.1 - 40 % 0.05 - 40 % - - - - 50 - 100,000 - - 10 - - - 50 - 100,000		-	-	-	0.05 - 50 %
Mo 5 - 10,000 1 - 10,000 2 - 10,000 - Na 0.05 - 10 % 0.01 - 10 % 100 - 100,000 50 - 200,000 Nd 5 - 10,000 5 - 10,000 5 - 10,000 - Ni 50 - 10,000 20 - 10,000 - - Rb 30 - 10,000 15 - 10,000 20 - 10,000 - Re - - 1 - 5,000 - Sb 0.2 - 10,000 0.1 - 10,000 0.1 - 200 - - Sc 0.1 - 200 0.1 - 200 0.1 - 200 - - Sc 0.1 - 10,000 0.01 - 10,000 - - - Sm 0.1 - 10,000 0.1 - 10,000 - - - Sm 0.05 - 10,000 0.01 - 10,000 - - - Sr 0.1 - 40 % 0.05 - 40 % - - - Ta 1 - 10,000 0.5 - 10,000 - - - Tb 0.5 - 10,000 0.5 - 10,000 <t< td=""><td>-</td><td>-</td><td></td><td>-</td><td></td></t<>	-	-		-	
Na 0.05 - 10 % 0.01 - 10 % 100 - 100,000 50 - 200,000 Nd 5 - 10,000 5 - 10,000 5 - 10,000 - - Ni 50 - 10,000 20 - 10,000 - - - Rb 30 - 10,000 15 - 10,000 20 - 10,000 - - Re - - - 1 - 5,000 Sb 0.2 - 10,000 0.1 - 10,000 0.1 - 200 - Sc 0.1 - 200 0.1 - 200 0.1 - 200 - Sc 0.1 - 10,000 0.1 - 10,000 - - Sm 0.1 - 10,000 0.1 - 10,000 - - Sm 0.1 - 10,000 0.1 - 10,000 - - Sm 0.05 - 10,000 0.01 - 10,000 - - Sm 0.05 - 10,000 0.5 - 10,000 - - Sm 0.1 - 40 % 0.05 - 10,000 - - Ta 1 - 10,000 0.5 - 10,000 - - U 0		5 - 10 000	1 - 10 000	2 - 10 000	-
Nd 5 - 10,000 5 - 10,000 5 - 10,000 - Ni 50 - 10,000 20 - 10,000 - - Rb 30 - 10,000 15 - 10,000 20 - 10,000 - Re - - 1 - 5,000 Sb 0.2 - 10,000 0.1 - 10,000 0.1 - 200 - Sc 0.1 - 200 0.1 - 200 0.1 - 200 - Se 5 - 10,000 3 - 10,000 2 - 10,000 - Sm 0.1 - 10,000 0.1 - 10,000 - - Sm 0.1 - 10,000 0.1 - 10,000 - - Sr 0.05 - 10 % 0.02 - 10 % - - Sr 0.1 - 40 % 0.05 - 40 % - - Sr 0.1 - 40 % 0.05 - 10,000 - - Ta 1 - 10,000 0.5 - 10,000 - - Th 0.5 - 10,000 0.5 - 10,000 - - V - - - 0.1 - 10,000 V					50 - 200 000
Ni 50 - 10,000 20 - 10,000 - - Rb 30 - 10,000 15 - 10,000 20 - 10,000 - - Re - - 1 - 5,000 - - Sb 0.2 - 10,000 0.1 - 10,000 0.1 - 10,000 - - Sc 0.1 - 200 0.1 - 200 0.1 - 200 - - Se 5 - 10,000 0.1 - 10,000 0.01 - 10,000 - - Sm 0.1 - 10,000 0.1 - 10,000 0.01 - 10,000 - - Sm 0.05 - 10 % 0.02 - 10 % - - - Sr 0.1 - 40 % 0.05 - 40 % - - - Sr 0.1 - 40 % 0.05 - 10,000 0.5 - 10,000 - - Ta 1 - 10,000 0.5 - 1,000 0.2 - 10,000 - - Th 0.5 - 10,000 0.5 - 10,000 0.1 - 10,000 - - W 4 - 10,000 1 - 10,000 2 - 10,000 - <					50 200,000
Rb 30 - 10,000 15 - 10,000 20 - 10,000 - Re - - 1 - 5,000 Sb 0.2 - 10,000 0.1 - 10,000 0.1 - 10,000 - Sc 0.1 - 200 0.1 - 200 0.1 - 200 - Se 5 - 10,000 3 - 10,000 2 - 10,000 - Sm 0.1 - 10,000 0.1 - 10,000 0.01 - 10,000 - Sm 0.05 - 10,000 0.02 - 10 % - - Sr 0.1 - 40 % 0.02 - 10 % - - Ta 1 - 10,000 0.5 - 10,000 0.5 - 10,000 - Tb 0.5 - 1,000 0.5 - 1,000 0.2 - 10,000 - Th 0.5 - 10,000 0.5 - 10,000 0.2 - 10,000 - U 0.5 - 10,000 0.5 - 10,000 0.1 - 10,000 - V - - - 50 - 100,000 U 0.5 - 10,000 0.5 - 10,000 0.2 - 1,000 - V - - -				5 10,000	-
Re - - 1-5,000 Sb 0.2 - 10,000 0.1 - 10,000 0.1 - 10,000 - Sc 0.1 - 200 0.1 - 200 0.1 - 200 - Se 5 - 10,000 3 - 10,000 2 - 10,000 - Sm 0.1 - 10,000 0.1 - 10,000 0.01 - 10,000 - Sm 0.05 - 10,000 0.02 - 10,% - - - Sr 0.1 - 40,% 0.02 - 10,% - - - - Ta 1 - 10,000 0.5 - 10,000 0.5 - 10,000 - - - Th 0.5 - 1,000 0.5 - 1,000 0.2 - 10,000 - - - Th 0.5 - 10,000 0.5 - 10,000 0.1 - 10,000 - - - - - 0.1 - 10,000 - - - - 0.1 - 10,000 - - - - 0.1 - 10,000 - - - - - - 0.1 - 10,000 - - - <td< td=""><td></td><td></td><td></td><td>20 10 000</td><td>-</td></td<>				20 10 000	-
Sb 0.2 - 10,000 0.1 - 10,000 0.1 - 10,000 - Sc 0.1 - 200 0.1 - 200 0.1 - 200 - Se 5 - 10,000 3 - 10,000 2 - 10,000 - Sm 0.1 - 10,000 0.1 - 10,000 0.01 - 10,000 - Sm 0.05 - 10,000 0.02 - 10,% - - Sr 0.1 - 40,% 0.02 - 10,% - - Ta 1 - 10,000 0.5 - 10,000 0.5 - 10,000 - Tb 0.5 - 1,000 0.5 - 10,000 - - Th 0.5 - 10,000 0.5 - 10,000 0.2 - 10,000 - U 0.5 - 10,000 0.5 - 10,000 0.2 - 10,000 - U 0.5 - 10,000 0.5 - 10,000 0.1 - 10,000 - V - - - 0.1 - 10,000 W 4 - 10,000 1 - 10,000 2 - 10,000 - - Yb 0.2 - 1,000 0.2 - 1,000 0.2 - 1,000 - - Y		50 - 10,000	15-10,000	20 - 10,000	1 5 000
Sc 0.1 - 200 0.1 - 200 0.1 - 200 - Se 5 - 10,000 3 - 10,000 2 - 10,000 - Sm 0.1 - 10,000 0.01 - 10,000 0.01 - 10,000 - Sm 0.05 - 10 % 0.02 - 10 % - - Sr 0.1 - 40 % 0.05 - 40 % - - Ta 1 - 10,000 0.5 - 10,000 0.5 - 10,000 - Tb 0.5 - 1,000 0.5 - 10,000 - - Th 0.5 - 10,000 0.5 - 10,000 - - Ti - - 50 - 100,000 - V - - - 0.1 - 10,000 W 4 - 10,000 0.5 - 10,000 0.1 - 10,000 - V - - - 0.1 - 10,000 W 4 - 10,000 1 - 10,000 2 - 10,000 - Yb 0.2 - 1,000 0.2 - 1,000 0.2 - 1,000 - Yb 0.2 - 1,000 50 - 100,000 - <td< td=""><td></td><td>- 0.2 10.000</td><td>-</td><td>-</td><td>1 - 3,000</td></td<>		- 0.2 10.000	-	-	1 - 3,000
Se 5 - 10,000 3 - 10,000 2 - 10,000 - Sm 0.1 - 10,000 0.01 - 10,000 0.01 - 10,000 - Sn 0.05 - 10 % 0.02 - 10 % - - Sr 0.1 - 40 % 0.05 - 40 % - - Ta 1 - 10,000 0.5 - 10,000 0.5 - 10,000 - Tb 0.5 - 1,000 0.5 - 10,000 0.2 - 10,000 - Th 0.5 - 10,000 0.5 - 10,000 0.2 - 10,000 - U 0.5 - 10,000 0.5 - 10,000 0.1 - 10,000 - V - - 50 - 100,000 - V - - 0.1 - 10,000 - V - - 0.1 - 10,000 - V - - 0.1 - 10,000 - W 4 - 10,000 1 - 10,000 2 - 10,000 - - Vb 0.2 - 1,000 0.2 - 1,000 0.2 - 1,000 - - Price: \$33,25 \$3				,	-
Sm 0.1 - 10,000 0.1 - 10,000 0.01 - 10,000 - Sn 0.05 - 10 % 0.02 - 10 % - - Sr 0.1 - 40 % 0.05 - 40 % - - Ta 1 - 10,000 0.5 - 10,000 0.5 - 10,000 - Tb 0.5 - 1,000 0.5 - 10,000 - - Th 0.5 - 10,000 0.5 - 10,000 - - Ti - - 50 - 100,000 - V - - 0.1 - 10,000 - Vb 0.2 - 1,000 0.2 - 1,000 2 - 10,000 - Yb 0.2 - 1,000 0.2 - 1,000 - - Zn 50 - 100,000 50 - 100,000 - - <tr tr=""> Price:<</tr>					-
Sn 0.05 - 10 % 0.02 - 10 % - - Sr 0.1 - 40 % 0.05 - 40 % - - Ta 1 - 10,000 0.5 - 10,000 0.5 - 10,000 - Tb 0.5 - 1,000 0.5 - 10,000 - - Th 0.5 - 10,000 0.5 - 10,000 - - Ti - - 50 - 100,000 - V - - 0.1 - 10,000 - Vb 0.2 - 1,000 0.2 - 1,000 2 - 10,000 - Yb 0.2 - 1,000 0.2 - 1,000 0.2 - 1,000 - Zn 50 - 100,000 50 - 100,000 - - Price: \$33.25 \$37.25 One Element \$29.00 One Element \$29.00					-
Sr 0.1 - 40 % 0.05 - 40 % - - Ta 1 - 10,000 0.5 - 10,000 0.5 - 10,000 - Tb 0.5 - 1,000 0.5 - 10,000 - - Th 0.5 - 10,000 0.5 - 10,000 - - Ti - - 50 - 100,000 - V - - 0.1 - 10,000 - V - - 0.1 - 10,000 - Vb 0.2 - 1,000 0.2 - 1,000 2 - 10,000 - Yb 0.2 - 1,000 0.2 - 1,000 - - Zn 50 - 100,000 50 - 100,000 - - Price: \$33.25 \$37.25 One Element \$29.00 One Element \$26.25				0.01 - 10,000	-
Ta 1 - 10,000 0.5 - 10,000 0.5 - 10,000 - Tb 0.5 - 1,000 0.5 - 1,000 - - Th 0.5 - 10,000 0.5 - 10,000 0.2 - 10,000 - Ti - - 50 - 100,000 - U 0.5 - 10,000 0.5 - 10,000 0.1 - 10,000 - V - - 0.1 - 10,000 - V - - 0.1 - 10,000 - V - - 0.1 - 10,000 - Vb 0.2 - 1,000 0.2 - 1,000 0.2 - 1,000 - Zn 50 - 100,000 50 - 100,000 - - Price: \$33.25 \$37.25 One Element \$29.00 One Element \$26.25				-	-
Tb 0.5 - 1,000 0.5 - 1,000 - - Th 0.5 - 10,000 0.5 - 10,000 0.2 - 10,000 - Ti - - 50 - 100,000 - U 0.5 - 10,000 0.5 - 10,000 0.1 - 10,000 - - V - - 0.1 - 10,000 - - V - - 0.1 - 10,000 - - V - - 0.1 - 10,000 - - Vb 0.2 - 1,000 0.2 - 1,000 0.2 - 1,000 - - Zn 50 - 100,000 50 - 100,000 - - - Price: \$33.25 \$37.25 One Element \$29.00 One Element \$26.25				-	-
Th 0.5-10,000 0.5-10,000 0.2-10,000 - Ti - - 50 - 100,000 - U 0.5 - 10,000 0.5 - 10,000 0.1 - 10,000 - - V - - 0.1 - 10,000 - - - 0.1 - 10,000 - - - - 0.1 - 10,000 - - - - - - - 0.1 - 10,000 - - - - - - 0.1 - 10,000 - - - - - - 0.1 - 10,000 - </td <td></td> <td></td> <td></td> <td>0.5 - 10,000</td> <td>-</td>				0.5 - 10,000	-
Ti - - 50 - 100,000 U 0.5 - 10,000 0.1 - 10,000 - V - - 0.1 - 10,000 W 4 - 10,000 1 - 10,000 2 - 10,000 - Yb 0.2 - 1,000 0.2 - 1,000 0.2 - 10,000 - Zn 50 - 100,000 50 - 100,000 - - Price: \$33.25 \$37.25 One Element \$29.00 One Element \$26.25				-	-
U 0.5 - 10,000 0.5 - 10,000 0.1 - 10,000 - V - - 0.1 - 10,000 - W 4 - 10,000 1 - 10,000 2 - 10,000 - Yb 0.2 - 1,000 0.2 - 1,000 0.2 - 1,000 - Zn 50 - 100,000 50 - 100,000 - - Price: \$33.25 \$37.25 One Element \$29.00 One Element \$56.25		0.5-10,000	0.5-10,000	0.2-10,000	-
V - - 0.1 - 10,000 W 4 - 10,000 1 - 10,000 2 - 10,000 - Yb 0.2 - 1,000 0.2 - 1,000 0.2 - 1,000 - Zn 50 - 100,000 50 - 100,000 - - Price: \$33.25 \$37.25 One Element \$29.00 One Element \$29.00		-	-	-	50 - 100,000
W 4 - 10,000 1 - 10,000 2 - 10,000 - Yb 0.2 - 1,000 0.2 - 1,000 0.2 - 1,000 - Zn 50 - 100,000 50 - 100,000 - - Price: \$33.25 \$37.25 One Element \$29.00 One Element \$29.00		0.5 - 10,000	0.5 - 10,000	0.1 - 10,000	-
Yb 0.2 - 1,000 0.2 - 1,000 0.2 - 1,000 - Zn 50 - 100,000 50 - 100,000 - - Price: \$33.25 \$37.25 One Element \$29.00 One Element \$56.25		-	-	-	0.1 - 10,000
Zn 50 - 100,000 50 - 100,000 - Price: \$33.25 \$37.25 One Element \$29.00 One Element \$56.25					
Price: \$33.25 \$37.25 One Element \$29.00 One Element \$56.25				0.2 - 1,000	
				-	-
Each Additional Element Add \$3.75 Add \$9.00	Price:	• • • • •			
		Each	Additional Element	Add \$3.75	Add \$9.00

Key advantages of INAA include:

- Total determination of selected resistive and volatile elements, including Au
- Up to 30g of material can be analyzed for a more representative sub-sample
- Non-destructive, allowing material to be used for other analysis

Exploration Geochemistry

Multi-Method Analyses

ICP-OES and ICP-MS analyses by 4-acid (hydrochloric, nitric, perchloric and hydrofluoric) digestion are "near total" digestions. INAA analysis yields total metals.

NOTE: Results from acid digestions may be lab dependent or lab operator dependent. Actlabs has automated this aspect of digestion using a microprocessor designed hotbox to accurately reproduce digestion conditions every time.

1	INAA+ICP-OES (ppm)	INAA + ICP-OES + ICP-MS (ppm)	INAA+ICP-MS (ppm)
Package	1H	Ultratrace 3	Ultratrace 5
Ag	0.3 - 10,000	0.05 - 10,000	0.05 - 100,000
Al	0.01 -50 %	0.01 - 50 %	-
As	0.5 - 10,000	0.5 - 10,000	0.5 - 10,000
Au	2 - 30,000 ppb	2 - 30,000 ppb	2 - 30,000 ppb
Ba	50 - 500,000	1 - 100,000	1 - 100,000
Be	1 - 10,000	0.1 - 1,000	0.1 - 1,000
Bi	2 -10,000	0.02 - 10,000	0.02 - 2,000
Br	0.5 -5,000	0.5 - 5,000	0.5 - 5,000
Ca	0.01 - 70 %	0.01 - 70 %	0.01 - 50 %
Cd	0.3 - 2,000	0.1 - 2,000	0.1 - 1,000
Ce	3 - 10,000	0.1 - 10,000	0.1 - 10,000
Co	1 - 5,000	1 - 5,000	0.1 - 5,000
Cr	2 - 100,000	1 - 10,000	1 - 100,000
Cs	1 - 10,000	0.05 - 5,000	0.05 - 5,000
Cu	1 - 10,000	0.2 - 10,000	0.2 - 10,000
Dy	-	0.1 - 5000	0.1 - 5000
Er	-	0.1 - 1,000	0.1 - 1,000
Eu	0.2 - 10,000	0.05 - 1,000	0.05 - 100
Fe	0.01 - 70 %	0.01 - 70 %	0.01 - 50 %
Ga	-	0.1 - 500	0.1 - 500
Gd	-	0.1 - 500	0.1 - 5,000
Ge	-	0.1 - 500	0.1 - 500
Hf	1 -5,000	0.1 - 5,000	1 - 5,000
Hg	1 - 1,000	1 - 1,000	1 - 1,000
Ho	-	0.1 - 1,000	0.1 - 1,000
In	-	0.1 - 100	0.1 - 100
Ir	5 - 10,000 ppb	5 - 10,000 ppb	-
К	0.01 - 10 %	0.01 - 10 %	0.01 - 5 %
La	0.5 - 10,000	0.5 - 10,000	0.1 - 10,000
Li	1 - 10,000	1 - 10,000	0.5 - 400
Lu	0.05 - 10,000	0.1 - 100	0.1 - 100
Mg	0.01 - 50 %	0.01 - 50 %	0.01 - 10 %
Mn	5 - 100,000	5 - 100,000	1 - 10,000
Mo	1 - 10,000	0.2 - 10,000	0.05 - 10,000
Na	0.01 - 50 %	0.01 - 20 %	0.01 - 20 %
Nb	-	0.1 - 500	0.1 - 500
Nd	5 - 10,000	0.01 - 10,000	0.1 - 10,000
Ni	1 - 100,000	0.5 - 100,000	0.5 - 100,000
Р	0.001 - 10 %	0.001 - 10 %	-
Pb	3 - 5,000	0.5 - 5,000	0.5 - 5,000
Pr	-	0.1 - 1,000	0.1 - 1,000
Rb	15 -10,000	0.2 - 5,000	0.2 - 5,000
Re	-	0.001 - 100	0.001 - 100
S +	0.01 - 20 %	0.01 - 20 %	-
Sb	0.1 - 10,000	0.1 - 10,000	0.1 - 10,000
Sc	0.1 - 1,000	0.1 - 1,000	0.1 - 1,000
Se	3 - 10,000	0.1 - 10,000	0.1 - 10,000
Sm	0.1 - 10,000	0.1 - 100	0.1 - 100
Sn	0.02 - 20 %	1 - 200	1-200
Sr	1 - 10,000	0.2 - 1,000	0.2 - 1,000
Ta	0.5 - 10,000	0.1 - 10,000	0.1 - 10,000
Tb	0.5 - 10,000	0.1 - 5,000	0.1 - 100
Te	-	0.02 - 500	0.1 - 500
Th	0.2 - 10,000	0.1 - 10,000	0.1 - 10,000
Ti	0.01 - 10 %	0.01 - 10 %	-
TI	-	0.05 - 500	0.05 - 500
Tm	-	0.1 - 1,000	0.1 - 1,000
U	0.5 - 10,000	0.1 - 10,000	0.1 - 10,000
V	2 - 10,000	2 - 10,000	1 - 1,000
W Y	1 - 10,000	1 - 10,000	1 - 10,000
	1 - 1,000	0.01 - 10,000	0.1 - 10,000
Yb	0.2 - 10,000	0.1 - 5,000 0.5 - 100,000	0.1 - 5,000 0.5 - 100,000
Zn Zr	1 - 100,000	1 - 5,000	1 - 5,000
Price:	\$47.25	\$61.75	\$48.25
- me.	₽ 4 7.∠J	φ01.75	940.2J

Extraction of each element by 4-Acid Digestion is dependent on mineralogy + Sulphide sulphur and soluble sulphates are extracted

Lithogeochemistry and Whole Rock Analysis

Lithogeochemistry		ICP-OES	ICP-MS	ICP-MS	ICP-OES+MS	ICP-OES+MS
Litingevenemistry	Package	4B	4B2-Std	4B2-Research	4 Litho	4 Litho-Research
The most aggressive fusion technique employs	Al ₂ O ₃	0.01%	-	-	0.01%	0.01%
a lithium metaborate/ tetraborate fusion.	CaO	0.01%	-	-	0.01%	0.01%
Fusion is performed by a robot at Actlabs,	Fe ₂ O ₃	0.01%	-	-	0.01%	0.01%
which provides a fast fusion of the highest	K₂O	0.01%	-	-	0.01%	0.01%
quality in the industry. The resulting molten	MgO	0.01%	-	-	0.01%	0.01%
bead is rapidly digested in a weak nitric acid	MnO	0.005%	-	-	0.005%	0.005%
solution. The fusion ensures that the entire	Na₂O	0.01%	-	-	0.01%	0.01%
sample is dissolved. It is only with this attack	P ₂ O ₅	0.01%	-	-	0.01%	0.01%
that major oxides including SiO2, refractory	SiO ₂	0.01%	-	-	0.01%	0.01%
minerals (i.e. zircon, sphene, monazite,	TiO ₂	0.001%	-	-	0.001%	0.001%
chromite, gahnite, etc.), REE and other high	LOI	0.01%	-	-	0.01%	0.01%
field strength elements are put into solution.	Ag	(0.3+)	0.5	0.5	0.5	0.5
High sulphide-bearing rocks may require	As	(0.5++)	5 (0.5++)	5 (0.5++)	5 (0.5++)	5 (0.5++)
different treatment but can still be adequately	Au	(2ppb++)	(2ppb++)	(2ppb++)	(2ppb++)	(2ppb++)
	Ba	2	3	3	2	2
analyzed. Analysis is by ICP-OES and ICP-MS.	Be	1			1	1
Quality of data is exceptional and can be used	Bi		0.4	0.1	0.4	0.1
for the most exacting applications. Values on	Br	(0.5++)	(0.5++)	(0.5++)	(0.5++)	(0.5++)
internal replicates and standards are provided	Cd	(0.5+)	(0.5+)	(0.5+)	(0.5+)	(0.5+)
at no cost, as are REE chondrite plots. Eu	Co	(1++)	1	1	1	1
determinations are semiquantitative in samples	Cr	(0.5++)	20 (0.5++)	20 (0.5++)	20 (0.5++)	20 (0.5++)
having extremely high Ba concentrations (> 5	Cs	(1++)	0.5	0.1	0.5	0.1
%).	Cu	(1+)	10 (1+)	10 (1+)	10 (1+)	10 (1+)
Mineralized Complex: Although intended primarily	Fe		(0.01%++)	(0.01%++)	1	1
Mineralized Samples: Although intended primarily	Ga Ge		1	1 0.5	1	1 0.5
for unmineralized samples, mineralized samples can		(1++)	0.2	0.5	0.2	0.5
be analyzed. However, data may be semiquantitative	Hf	(1++)	0.2	0.1	0.2	0.1
for chalcophile elements (Ag, As, Bi, Co, Cu, Mo, Ni,	ln Ir	(5ppb++)	(5ppb++)	(5ppb++)		(5ppb++)
Pb, Sb, Sn, W and Zn). For quantitative chalcophile	Mo	(5ppb++) (5++)	(Sppb++) 2	(Sppb++) 2	(5ppb++) 2	
data see add-ons below.	Na	()++)	(0.01%++)	(0.01%++)	Z	2
Code 4B: Lithium Borate Fusion / ICP-OES Whole Rock	Nb		1	0.2	1	0.2
Package. Data meets or exceeds quality of data by	Ni	(1+)	20 (1+)	20 (1+)	20 (1+)	20 (1+)
fusion XRF.	Pb	(5+)	5	5	5	5
IUSIOITARE.	Rb	(20++)	2	1	2	1
Code 4B2: Lithium Borate Fusion / ICP-MS Trace	S	(10+)	(10+)	(10+)	(10+)	(10+)
Element package: Codes 4B2-STD and 4B2-Research	Sb	(0.2++)	0.5 (0.2++)	0.2	0.5 (0.2++)	0.2
both provide research quality data. 0.5 g required.	Sc	1	(0.1++)	(0.1++)	1 (0.1++)	1 (0.1++)
	Se	(3++)	(3++)	(3++)	(3++)	(3++)
Research designation: indicates lower detection	Sn	(-)	1	1	1	1
limits	Sr	2	2	2	2	2
Code 41 ith a code 61 ith a December The 4D and	Та	(0.5++)	0.1	0.01	0.1	0.01
Code 4 Litho and Code 4 Litho-Research: The 4B and	Th	(0.2++)	0.1	0.05	0.1	0.05
4B2 packages are combined. 5 g required.	TI		0.1	0.05	0.1	0.05
For quantitative values of chalcophile elements, use	U	(0.5++)	0.1	0.01	0.1	0.01
code 4B1 or 4B-INAA. A minimum sample weight of 5 g	V	5	5	5	5	5
is required. If submitting a pulp, please ensure sample	W	(1++)	1	0.5	1	0.5
is 95% passing 74 µm for any lithium borate fusion	Y	1	1	0.5	1	0.5
processes.	Zn	(1+)	30 (1+)	30 (1+)	30 (1+)	30 (1+)
	Zr	2	5	1	2	1
QUANT: If REE concentrations are greater than the	La	(0.5++)	0.1	0.05	0.1	0.05
upper limits shown on our website under package	Ce	(3++)	0.1	0.05	0.1	0.05
descriptions, we will dilute to quantify and apply the	Pr		0.05	0.01	0.05	0.01
QUANT surcharge.	Nd	(5++)	0.1	0.05	0.1	0.05
	Sm	(0.1++)	0.1	0.01	0.1	0.01
(+) Code 4B1: Optional elements by multiacid digestion.	Eu	(0.2++)	0.05	0.005	0.05	0.005
Please add 0.5 g. For reporting limits, see package 1F2	Gd		0.1	0.01	0.1	0.01
(page 10).	Tb	(0.5++)	0.1	0.01	0.1	0.01
(++) Code 4B-INAA: Optional elements are available	Dy		0.1	0.01	0.1	0.01
by INAA. Please add 0.5 to 30 g depending on sample	Ho		0.1	0.01	0.1	0.01
size you prefer to analyze for Au with this option. For	Er		0.1	0.01	0.1	0.01
reporting limits, see package 1D Enhanced (page 12).	Tm		0.05	0.005	0.05	0.005
	Yb	(0.2++)	0.1	0.01	0.1	0.01
Add-ons Surcharge	Lu	(0.005++)	0.01	0.002	0.01	0.002
	1-10	\$47.50	\$66.00	\$101.00	\$94.75	\$121.50
4B1 \$15.50	Samples					

All elements are in ppm except where noted. Prices per sample. + Sulphide sulphur and soluble sulphates are extracted

\$28.00

\$22.50

4B-INAA

QUANT

14

Lithogeochemistry and Whole Rock Analysis

Code 4C: Lithium Borate Fusion / XRF Whole Rock Package. Samples containing >1% barite or sulphide should be analyzed with Code 4B. A minimum sample weight of 3g is required. Sample composition may require

Sample composition may require		Na ₂ O	-	0.01%	0.01%	
			P ₂ O ₅	-	0.01%	0.01%
		ne by Code 4B	SiO ₂	-	0.01%	0.01%
instea	d.		TiO₂	-	0.001%	0.001%
			LOI		0.01%	0.01%
				-		
	WRA-X	RF	Ag	2	0.5	0.5
Pa	ckage	4C	As	1	2	1
	Al ₂ O ₃	0.01%	Au	2 ppb	5 ppb	1 ppb
	CaO	0.01%	Ba	20	3	1
			Be	-	1	1
	Cr₂O₃	0.01%	Bi		2	2 (0.1 ‡‡)
	0304	0.005%		0.5		
(CuO	0.005%	Br		1	0.5
F	e ₂ O ₃	0.01%	Ca	0.2%	-	-
	K ₂ O	0.01%	Cd	-	0.5	0.5
N	ИgO	0.01%	Со	0.1	1	0.1
	VnO	0.005%	Cr	0.5	1	0.5
	la₂O	0.01%	Cs	0.2	0.5	0.2 (0.1 ‡‡)
	NiO	0.003%	Cu	-	1	1
	P ₂ O ₅	0.01%				1
	SiO ₂	0.01%	Fe	0.01%	-	-
	TiO ₂	0.01%	Ga		(5 ‡)	(5 ‡) (1 ‡‡)
	V ₂ O ₅	0.003%	Ge	-	-	(0.5 ‡‡)
			Hf	0.2	0.5	0.2 (0.1 ‡‡)
	LOI	0.01%	Hg	-	1-1000ppm	1-1000ppm
1-10) Samples	\$41.25	In		-	(0.1 ‡‡)
11+	Samples	\$37.00	lr	2 ppb	2	2
			Mo	2 pps	5	2
Ad	d-ons	Surcharge			J	Z
4E-XRF		\$23.75	Na	0.001%	-	-
46-710		423.73	Nb	-	(1 ‡)	<mark>(1 ‡)</mark> (0.2‡‡)
4E ICP-MS		\$45.50	Ni	50	1	1
			Pb	-	(5 ‡)	(5 ‡)
Pressec	l Pellet XRF	Analysis	Rb	10	20 (2 ‡)	10 <mark>(2 ‡)</mark> (1 ‡‡)
			S	-	0.001%	0.001%
	Code 4	C1	Sb	0.1	0.2	0.1
Group	Element	Range (ppm)	Sc	0.01	0.1	0.01
			Se	0.5	3	0.5
	Ba	5-10,000		0.5		
			C .			
		5-10 000	Sn	-	(5 ‡)	(5 ‡) (1 ‡‡)
	Ga	5-10,000	Sr	100	2	2
		5-10,000 1-10,000	Sr Ta		2 1	
٨	Ga Nb	1-10,000	Sr	100	2	2
A	Ga		Sr Ta	100 0.3	2 1	2 0.3 (0.01‡‡)
A	Ga Nb	1-10,000	Sr Ta Th	100 0.3 0.1	2 1 0.5 -	2 0.3 (0.01‡‡) 0.1 (0.05 ‡‡) (0.05 ‡‡)
A	Ga Nb Rb Sr	1-10,000 2-10,000 2-10,000	Sr Ta Th Tl U	100 0.3 0.1 - 0.1	2 1 0.5 - 0.5	2 0.3 (0.01‡‡) 0.1 (0.05 ‡‡) (0.05 ‡‡) 0.1 (0.01 ‡‡)
A	Ga Nb Rb	1-10,000 2-10,000	Sr Ta Th Tl U V	100 0.3 0.1 - 0.1	2 1 0.5 - 0.5 5	2 0.3 (0.01‡‡) 0.1 (0.05 ‡‡) (0.05 ‡‡) 0.1 (0.01 ‡‡) 5
A	Ga Nb Rb Sr	1-10,000 2-10,000 2-10,000	Sr Ta Th Tl U V W	100 0.3 0.1 - 0.1	2 1 0.5 - 0.5 5 3	2 0.3 (0.01‡‡) 0.1 (0.05 ‡‡) (0.05 ‡‡) 0.1 (0.01 ‡‡) 5 1
A	Ga Nb Rb Sr Y Zr	1-10,000 2-10,000 2-10,000 2-10,000 5-10,000	Sr Ta Th U V W Y	100 0.3 0.1 - 0.1 - 1	2 1 0.5 - 5 3 1	2 0.3 (0.01‡‡) 0.1 (0.05 ‡‡) (0.05 ‡‡) 0.1 (0.01 ‡‡) 5 1 1
A	Ga Nb Rb Sr Y	1-10,000 2-10,000 2-10,000 2-10,000	Sr Ta Th U V W Y Zn	100 0.3 0.1 - 0.1	2 1 0.5 5 3 1 2	2 0.3 (0.01‡‡) 0.1 (0.05 ‡‡) (0.05 ‡‡) 0.1 (0.01 ‡‡) 5 1 1 2
A	Ga Nb Rb Sr Y Zr Co	1-10,000 2-10,000 2-10,000 2-10,000 5-10,000 5-1,000	Sr Ta Th U V W Y Zn Zr	100 0.3 0.1 - - 1 - 10 -	2 1 0.5 5 3 1 2 4	2 0.3 (0.01‡‡) 0.1 (0.05 ‡‡) (0.05 ‡‡) 0.1 (0.01 ‡‡) 5 1 1 2 4 (1 ‡‡)
A	Ga Nb Rb Sr Y Zr Co Cr	1-10,000 2-10,000 2-10,000 2-10,000 5-10,000 5-1,000 5-10,000	Sr Ta Th U V W Y Zn	100 0.3 0.1 - 0.1 - 1 - 10 - 0.05	2 1 0.5 5 3 1 2 4 0.5	2 0.3 (0.01‡‡) 0.1 (0.05 ‡‡) (0.05 ‡‡) 0.1 (0.01 ‡‡) 5 1 1 2 4 (1 ‡‡) 0.05
A	Ga Nb Rb Sr Y Zr Co	1-10,000 2-10,000 2-10,000 2-10,000 5-10,000 5-1,000	Sr Ta Th U V W Y Zn Zr	100 0.3 0.1 - - 1 - 10 -	2 1 0.5 5 3 1 2 4	2 0.3 (0.01‡‡) 0.1 (0.05 ‡‡) (0.05 ‡‡) 0.1 (0.01 ‡‡) 5 1 1 2 4 (1 ‡‡)
	Ga Nb Rb Sr Y Zr Co Co Cr Cu	1-10,000 2-10,000 2-10,000 2-10,000 5-10,000 5-10,000 5-10,000 5-2,500	Sr Ta Th U V W Y Zn Zr Zr La	100 0.3 0.1 - 1 - 10 - 0.05 1	2 1 0.5 5 3 1 2 4 0.5	2 0.3 (0.01‡‡) 0.1 (0.05 ‡‡) (0.05 ‡‡) 0.1 (0.01 ‡‡) 5 1 1 2 4 (1 ‡‡) 0.05
A	Ga Nb Rb Sr Y Zr Co Cr Cu Ni	1-10,000 2-10,000 2-10,000 5-10,000 5-1,000 5-1,000 5-2,500 4-4,000	Sr Ta Th U V W Y Zn Zr Zr La Ce Pr	100 0.3 0.1 - 0.1 - 1 - 10 - 0.05	2 1 0.5 5 3 1 2 4 0.5 3 2	$\begin{array}{c} 2\\ 0.3 (0.01^{\pm})\\ 0.1 (0.05^{\pm})\\ (0.05^{\pm})\\ 0.1 (0.01^{\pm})\\ 5\\ 1\\ 1\\ 2\\ 4 (1^{\pm})\\ 0.05\\ 1 (0.05^{\pm})\\ (0.01^{\pm})\\ \end{array}$
	Ga Nb Rb Sr Y Zr Co Co Cr Cu	1-10,000 2-10,000 2-10,000 2-10,000 5-10,000 5-10,000 5-10,000 5-2,500	Sr Ta Th U V V Y Zn Zr Zr La Ce Pr Nd	100 0.3 0.1 - 0.1 - 1 - 10 - 0.05 1 (0.01 †) 1	2 1 0.5 5 3 1 2 4 0.5 3 - 5	$\begin{array}{c} 2\\ 0.3 (0.01^{\pm})\\ 0.1 (0.05^{\pm})\\ (0.05^{\pm})\\ 0.1 (0.01^{\pm})\\ 5\\ 1\\ 1\\ 2\\ 4 (1^{\pm})\\ 0.05\\ 1 (0.05^{\pm})\\ (0.01^{\pm})\\ 1 (0.05^{\pm})\\ 1 (0.05^{\pm})\\ \end{array}$
	Ga Nb Rb Sr Y Zr Co Cr Cu Cu Ni	1-10,000 2-10,000 2-10,000 5-10,000 5-10,000 5-10,000 5-2,500 4-4,000 5-1,000	Sr Ta Th U V V Y Zn Zr Zr La Ce Pr Nd Sm	100 0.3 0.1 - 0.1 - 1 1 - 10 - 0.05 1 (0.01 †) 1 0.01	2 1 0.5 5 3 1 2 4 0.5 3 - 5 0.1	$\begin{array}{c} 2\\ 0.3 (0.01 \pm 1)\\ 0.1 (0.05 \pm 1)\\ (0.05 \pm 1)\\ 0.1 (0.01 \pm 1)\\ 5\\ 1\\ 1\\ 2\\ 4 (1 \pm 1)\\ 0.05\\ 1 (0.05 \pm 1)\\ (0.01 \pm 1)\\ 1 (0.05 \pm 1)\\ 0.01\\ \end{array}$
	Ga Nb Rb Sr Y Zr Co Cr Cu Ni	1-10,000 2-10,000 2-10,000 5-10,000 5-10,000 5-10,000 5-2,500 4-4,000 5-1,000 5-10,000	Sr Ta Th U V V Y Zn Zr Zr La Ce Pr Nd Sm Eu	100 0.3 0.1 - 0.1 - 1 - 10 - 0.05 1 (0.01 †) 1 0.01 0.05	2 1 0.5 5 3 1 2 4 0.5 3 - 5	$\begin{array}{c} 2\\ 0.3 (0.01^{\pm})\\ 0.1 (0.05^{\pm})\\ (0.05^{\pm})\\ 0.1 (0.01^{\pm})\\ 5\\ 1\\ 1\\ 2\\ 4 (1^{\pm})\\ 0.05\\ 1 (0.05^{\pm})\\ (0.05^{\pm})\\ (0.01^{\pm})\\ 1 (0.05^{\pm})\\ 0.01\\ 0.05 (0.005^{\pm})\\ \end{array}$
	Ga Nb Rb Sr Y Zr Co Cr Cu Cu Ni	1-10,000 2-10,000 2-10,000 5-10,000 5-10,000 5-10,000 5-2,500 4-4,000 5-1,000	Sr Ta Th Tl U V W Y Zn Zr Zn Zr La Ce Pr Nd Sm Eu Gd	100 0.3 0.1 - 0.1 - 1 - 0.05 1 (0.01 †) 1 0.05 (0.01 †)	2 1 0.5 5 3 1 2 4 0.5 3 - 5 0.1 0.1 -	$\begin{array}{c} 2\\ 0.3 (0.01^{\pm})\\ 0.1 (0.05^{\pm})\\ (0.05^{\pm})\\ 0.1 (0.01^{\pm})\\ 5\\ 1\\ 1\\ 2\\ 4 (1^{\pm})\\ 0.05\\ 1 (0.05^{\pm})\\ (0.05^{\pm})\\ (0.01^{\pm})\\ 1 (0.05^{\pm})\\ 0.01\\ 0.05 (0.005^{\pm})\\ (0.01^{\pm})\\ 1 (0.01^{\pm})\\ \end{array}$
	Ga Nb Rb Sr Y Zr Co Cr Cu Cu Ni Pb V Zn	1-10,000 2-10,000 2-10,000 5-10,000 5-1,000 5-1,000 5-2,500 4-4,000 5-1,000 5-1,000 5-1,000	Sr Ta Th U V Q Y Zn Zr La Ce Pr Nd Sm Eu Gd Tb	100 0.3 0.1 - 0.1 - 1 - 0.05 1 (0.01 †) 1 0.05 (0.01 †) 0.1	2 1 0.5 5 3 1 2 4 0.5 3 - 5 0.1	$\begin{array}{c} 2\\ 0.3 (0.01^{\pm})\\ 0.1 (0.05^{\pm})\\ (0.05^{\pm})\\ 0.1 (0.01^{\pm})\\ 5\\ 1\\ 1\\ 2\\ 4 (1^{\pm})\\ 0.05^{\pm})\\ (0.05^{\pm})\\ (0.05^{\pm})\\ (0.05^{\pm})\\ 1 (0.05^{\pm})\\ 0.01^{\pm})\\ 0.05 (0.005^{\pm})\\ 0.01^{\pm})\\ 0.01 (0.01^{\pm})\\ 0.1 (0.01^{\pm})\end{array}$
В	Ga Nb Rb Sr Y Zr Zr Co Cr Cu Ni Pb	1-10,000 2-10,000 2-10,000 5-10,000 5-10,000 5-10,000 5-2,500 4-4,000 5-1,000 5-10,000	Sr Ta Th Tl U V W Y Zn Zr Zn Zr La Ce Pr Nd Sm Eu Gd	100 0.3 0.1 - 0.1 - 1 - 0.05 1 (0.01 †) 1 0.05 (0.01 †)	2 1 0.5 5 3 1 2 4 0.5 3 - 5 0.1 0.1 -	$\begin{array}{c} 2\\ 0.3 (0.01^{\pm})\\ 0.1 (0.05^{\pm})\\ (0.05^{\pm})\\ 0.1 (0.01^{\pm})\\ 5\\ 1\\ 1\\ 2\\ 4 (1^{\pm})\\ 0.05\\ 1 (0.05^{\pm})\\ (0.05^{\pm})\\ (0.01^{\pm})\\ 1 (0.05^{\pm})\\ 0.01\\ 0.05 (0.005^{\pm})\\ (0.01^{\pm})\\ 1 (0.01^{\pm})\\ \end{array}$
	Ga Nb Rb Sr Y Zr Co Cr Cu Cu Ni Pb V Zn	1-10,000 2-10,000 2-10,000 5-10,000 5-1,000 5-1,000 5-2,500 4-4,000 5-1,000 5-1,000 5-1,000	Sr Ta Th U V W Y Zn Zr La Ce Pr Nd Sm Eu Gd Tb Dy	100 0.3 0.1 - 0.1 - 1 1 - 10 - 0.05 1 (0.01 †) 1 0.05 (0.01 †) 0.1 (0.01 †)	2 1 0.5 5 3 1 2 4 0.5 3 - 5 0.1 0.1 -	$\begin{array}{c} 2\\ 0.3 (0.01 \pm)\\ 0.1 (0.05 \pm)\\ (0.05 \pm)\\ 0.1 (0.01 \pm)\\ 5\\ 1\\ 1\\ 2\\ 4 (1 \pm)\\ 0.05\\ 1 (0.05 \pm)\\ (0.01 \pm)\\ 1 (0.05 \pm)\\ 0.01\\ 0.05 (0.005 \pm)\\ 0.01\\ 0.05 (0.005 \pm)\\ (0.01 \pm)\\ 0.01 \pm)\\ (0.01 \pm)\\ $
B	Ga Nb Rb Sr Y Zr Co Cr Cu Ni Pb V Zn Sn Zn	1-10,000 2-10,000 2-10,000 5-10,000 5-10,000 5-10,000 5-2,500 4-4,000 5-1,000 5-10,000 5-10,000 5-10,000 0.001-1%	Sr Ta Th U V W Zn Zn Zn Eu Gd Tb Dy Ho	100 0.3 0.1 - 0.1 - 1 - 10 - - 0.05 1 (0.01 †) 1 0.05 (0.01 †) 0.1 (0.01 †) (0.01 †)	2 1 0.5 5 3 1 2 4 0.5 3 - 5 0.1 0.1 -	$\begin{array}{c} 2\\ 0.3 (0.01 \pm)\\ 0.1 (0.05 \pm)\\ (0.05 \pm)\\ 0.1 (0.01 \pm)\\ 5\\ 1\\ 1\\ 2\\ 4 (1 \pm)\\ 0.05\\ 1 (0.05 \pm)\\ (0.05 \pm)\\ (0.01 \pm)\\ 1 (0.05 \pm)\\ 0.01\\ 0.05 (0.005 \pm)\\ (0.01 \pm)\\ 0.01 \pm)\\ (0.01 \pm)\\ (0$
В	Ga Nb Rb Sr Y Zr Co Cr Cu Ni Pb V Zn Sn Zn	1-10,000 2-10,000 2-10,000 5-10,000 5-10,000 5-1,000 5-2,500 4-4,000 5-1,000 5-1,000 5-1,000	Sr Ta Th U V W Zn Zn Zr La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er	100 0.3 0.1 - 0.1 - 1 - 10 - - 0.05 1 (0.01 †) 1 0.05 (0.01 †) 0.1 (0.01 †) (0.01 †) (0.01 †)	2 1 0.5 5 3 1 2 4 0.5 3 - 5 0.1 0.1 0.1 - 0.5 - - - - -	$\begin{array}{c} 2\\ 0.3 (0.01 \pm)\\ 0.1 (0.05 \pm)\\ (0.05 \pm)\\ 0.1 (0.01 \pm)\\ 5\\ 1\\ 1\\ 2\\ 4 (1 \pm)\\ 0.05\\ 1 (0.05 \pm)\\ (0.05 \pm)\\ (0.05 \pm)\\ 1 (0.05 \pm)\\ 1 (0.05 \pm)\\ 1 (0.05 \pm)\\ 1 (0.05 \pm)\\ 0.01\\ 1 (0.01 \pm)\\ 0.1 (0.01 \pm)\\ (0.01$
B C Any One I	Ga Nb Rb Sr Y Zr Co Cr Cu Ni Pb V Zn Sn Zn	1-10,000 2-10,000 2-10,000 5-10,000 5-10,000 5-10,000 5-2,500 4-4,000 5-1,000 5-10,000 5-10,000 5-10,000 0.001-1%	Sr Ta Th U V W Zn Zn Zr Base Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm	100 0.3 0.1 - 0.1 - 1 1 - 10 - 0.05 1 (0.01 †) 1 0.05 (0.01 †) 0.1 (0.01 †) 0.1 (0.01 †) (0.01 †) (0.01 †)	2 1 0.5 - 0.5 5 3 1 2 4 0.5 3 - 5 0.1 0.1 0.1 - 0.5 - - - - - - -	$\begin{array}{c} 2\\ 0.3 (0.01^{\pm})\\ 0.1 (0.05^{\pm})\\ (0.05^{\pm})\\ 0.1 (0.01^{\pm})\\ 5\\ 1\\ 1\\ 2\\ 4 (1^{\pm})\\ 0.05\\ 1 (0.05^{\pm})\\ (0.01^{\pm})\\ 1 (0.05^{\pm})\\ (0.01^{\pm})\\ 1 (0.05^{\pm})\\ 0.01\\ 0.05 (0.005^{\pm})\\ (0.01^{\pm})\\ 1 (0.01^{\pm})\\ (0.00^{\pm})\\ (0.00^{$
B C Any One I Each Addi	Ga Nb Rb Sr Y Zr Co Cr Cu Cu Ni Cu Ni Pb V Zn Zn Sn Zn Element	1-10,000 2-10,000 2-10,000 5-10,000 5-1,000 5-1,000 5-2,500 4-4,000 5-1,000 5-1,000 5-1,000 5-10,000 0.001-1% \$13.50 \$4.75	Sr Ta Th U V W Zn Zr La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb	100 0.3 0.1 - 0.1 - 1 - 10 - 0.05 1 (0.01 †) 1 0.01 0.05 (0.01 †) 0.1 (0.01 †) (0.01 †) (0.05	2 1 0.5 - 0.5 5 3 1 2 4 0.5 3 - 5 0.1 0.1 0.1 - 0.5 - - 0.5 0.1 0.1 0.1 0.5 - 0.5 0.1 0.1 0.1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	$\begin{array}{c} 2\\ 0.3 (0.01^{\pm})\\ 0.1 (0.05^{\pm})\\ (0.05^{\pm})\\ 0.1 (0.01^{\pm})\\ 5\\ 1\\ 1\\ 2\\ 4 (1^{\pm})\\ 0.05\\ 1 (0.05^{\pm})\\ (0.01^{\pm})\\ 1 (0.05^{\pm})\\ 1 (0.05^{\pm})\\ 0.01\\ 0.05 (0.005^{\pm})\\ (0.01^{\pm})\\ 1 (0.01^{\pm})\\ (0.05^{\pm})\\ (0.05^{$
B C Any One I Each Addi	Ga Nb Rb Sr Y Zr Co Cr Cu Cu Ni Pb V Zn Sn Zn Zn	1-10,000 2-10,000 2-10,000 2-10,000 5-10,000 5-10,000 5-2,500 4-4,000 5-10,000 5-10,000 5-10,000 5-10,000 5-10,000 \$-1,000 \$-1,000 \$-1,000 \$-1,000 \$-1,000 \$-1,000 \$-1,000 \$-1,000 \$-1,000 \$-1,000 \$-1,000 \$-1,000 \$-1,000 \$-1,000 \$-2,500 \$-2,500 \$-1,000 \$-2,500 \$-2,500 \$-2,500 \$-2,500 \$-2,500 \$-2,500 \$-2,500 \$-2,500 \$-1,000 \$-2,500 \$-2,500 \$-2,500 \$-1,000 \$-1,000 \$-1,000 \$-2,500 \$-2,500 \$-2,500 \$-2,500 \$-1,000 \$-2,500 \$-2,500 \$-1,000 \$-1,000 \$-1,000 \$-2,500 \$-2,500 \$-2,500 \$-2,500 \$-2,500 \$-2,500 \$-2,500 \$-2,500 \$-2,500 \$-2,500 \$-2,500 \$-1,000 \$	Sr Ta Th U V W Zn Zn Zr Base Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm	$\begin{array}{c} 100\\ 0.3\\ 0.1\\ -\\ 0.1\\ -\\ 0.1\\ -\\ 1\\ -\\ 0.05\\ 1\\ (0.01\ t)\\ 1\\ 0.05\\ (0.01\ t)\\ 0.05\\ (0.01\ t)\\ 0.1\\ (0.01\ t)\\ 0.05\\ 0.01\\ \end{array}$	2 1 0.5 - 0.5 5 3 1 2 4 0.5 3 - 5 0.1 0.1 0.1 - 0.5 - - 0.1 0.1 0.05	$\begin{array}{c} 2\\ 0.3 (0.01^{\pm})\\ 0.1 (0.05^{\pm})\\ (0.05^{\pm})\\ 0.1 (0.01^{\pm})\\ 5\\ 1\\ 1\\ 2\\ 4 (1^{\pm})\\ 0.05^{\pm})\\ (0.05^{\pm})\\ (0.05^{\pm})\\ (0.01^{\pm})\\ 1 (0.05^{\pm})\\ 0.05 (0.005^{\pm})\\ (0.01^{\pm})\\ 1 (0.01^{\pm})\\ 0.1 (0.01^{\pm})\\ (0.00^{\pm})\\ (0.00^{\pm$
B C Any One I Each Addi All of Gro	Ga Nb Rb Sr Y Zr Co Cr Cu Cu Ni Cu Ni Pb V Zn Zn Sn Zn Element	1-10,000 2-10,000 2-10,000 5-10,000 5-1,000 5-1,000 5-2,500 4-4,000 5-1,000 5-1,000 5-1,000 5-10,000 0.001-1% \$13.50 \$4.75	Sr Ta Th U V W Zn Zr La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb	100 0.3 0.1 - 0.1 - 1 - 10 - 0.05 1 (0.01 †) 1 0.01 0.05 (0.01 †) 0.1 (0.01 †) (0.01 †) (0.05	2 1 0.5 - 0.5 5 3 1 2 4 0.5 3 - 5 0.1 0.1 0.1 - 0.5 - - 0.5 0.1 0.1 0.1 0.5 - 0.5 0.1 0.1 0.1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	$\begin{array}{c} 2\\ 0.3 (0.01^{\pm})\\ 0.1 (0.05^{\pm})\\ (0.05^{\pm})\\ 0.1 (0.01^{\pm})\\ 5\\ 1\\ 1\\ 2\\ 4 (1^{\pm})\\ 0.05\\ 1 (0.05^{\pm})\\ (0.01^{\pm})\\ 1 (0.05^{\pm})\\ 1 (0.05^{\pm})\\ 0.01\\ 0.05 (0.005^{\pm})\\ (0.01^{\pm})\\ 1 (0.01^{\pm})\\ 0.1 (0.01^{\pm})\\ (0.05^{\pm})\\ (0.01^{\pm})\\ (0.05^{\pm})\\ (0.$

11+ Samples

\$79.25

\$69.00

\$17.50

All of Group C Elements

INAA

4A-Research

-

Package

 AI_2O_3

CaO

 Fe_2O_3

K₂O

MgO

MnO

Na₂O

INAA and multi-methods

4E-Research

0.01%

0.01%

0.01%

0.01%

0.01%

0.005%

0.01%

4E-Expl.

0.01%

0.01%

0.01%

0.01%

0.01%

0.005%

0.01%

Research designation: indicates lower detection limits.

Code 4A-Research: Grades are determined by INAA. A minimum sample weight of 2 g is recommended. REE chondrite plots are provided at no charge.

 † Code 4A RES-MS: elements indicated by † are analyzed by fusion ICP-MS.

Code 4E: This package uses ICP and INAA technologies to completely characterize geological samples. This package is not suitable for analyzing concentrates or mill products. A minimum sample weight of 5 g is required.

Code 4E Add-Ons

- **‡ Code 4E-XRF** elements Ga, Pb, Sn, Nb and Rb are determined by Pressed Pellet XRF. This package can be added to Code 4E exploration or Code 4E research (please add 6 g of sample).
- ‡‡ Code 4E ICP-MS add-on option: can only be added to Code 4E-Research grade.

Code 4F: Other analyses associated with WRA (can be added to any Code 4 package). Add 1 gram for each option chosen (see page 16).

All elements are in ppm except where noted. Prices per sample.

\$136.00

Lithogeochemistry and Whole Rock Analysis

Peroxide "Total" Fusion

Peroxide Fusions: Sodium peroxide fusion will result in a total metal recovery. It is effective for the decomposition of sulphides and refractory minerals. For nickel sulphide deposits this is the preferred method. This method is not suitable if sodium is required. Code 8 4-Acid is recommended if sodium is required.

	ICP-OES+MS (ppm)				
	Package U	ltratrace 7			
AI	0.01 - 25%	Мо	1 - 10,000		
As	5 - 10,000	Nb	2.4 - 5,000		
В	10 - 10,000	Nd	0.4 - 5,000		
Ва	3 - 10,000	Ni	10 - 10,000		
Be	3 - 5,000	Pb	0.8 - 5,000		
Bi	2 - 5,000	Pr	0.1 - 1,000		
Ca	0.01 - 40%	Rb	0.4 - 10,000		
Cd	2 - 5,000	S	0.01 - 25%		
Ce	0.8 - 5,000	Sb	2 - 5,000		
Co	0.2 - 5,000	Se	8 - 5,000		
Cr	30 - 10,000	Si	0.01 - 30%		
Cs	0.1 - 25,000	Sm	0.1 - 1,000		
Cu	2 - 10,000	Sn	0.5 - 10,000		
Dy	0.3 - 5,000	Sr	3 - 10,000		
Er	0.1 - 5,000	Та	0.2 - 10,000		
Eu	0.1 - 1,000	Tb	0.1 - 1,000		
Fe	0.05 - 30%	Те	6 - 10,000		
Ga	0.2 - 5,000	Th	0.1 - 1,000		
Gd	0.1 - 5,000	Ti	0.01 - 25%		
Ge	0.7 - 5,000	TI	0.1 - 1,000		
Hf	10 - 5,000	Tm	0.1 - 1,000		
Ho	0.2 - 1,000	U	0.1 - 10,000		
In	0.2 - 1,000	V	5 - 10,000		
К	0.1 - 25%	W	0.7 - 5,000		
La	0.4 - 10,000	Y	0.1 - 1,000		
Li	15-50,000	Yb	0.1 - 1,000		
Mg	0.01 - 30%	Zn	25 - 10,000		
Mn	3 - 10,000	-	-		
Price:		\$58.75			

Halogens

Halogen analysis is a great tool to aid with exploration. We offer halogen analysis by INAA (short-lived isotopes) or by fusion.

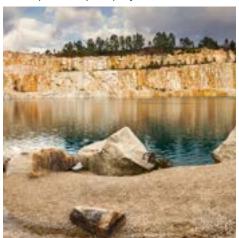
Code	Method	Detection Limit/Range	Price:
4F-Cl	INAA	0.01%	\$43.00
4F-CI (XRF)	Lithium Borate Fusion with XRF	0.005-5%	\$28.50
4F-F (KOH)	KOH Fusion	20-20,000	\$31.25
4F-F*	Lithium Borate Fusion with Ion Selective Electrode	0.01%	\$32.25
5S-Br	Short Lived Isotopes	5-10,000	\$52.00

All elements are in ppm except where noted. Prices per sample. *results may not be total and will be dependent on mineralogy in the sample

Mercury

Package	Method	Detection Limit	Price
1G	Cold Vapour FIMS	5ppb	\$13.50

Miscellaneous Analysis


Code	Method	Detection Limit/Range	Price:
4F-B	by PGNAA	2-10,000	\$52.75
4F-B	by PGNAA	0.5-10,000	\$64.50
4F-Gd	by PGNAA	0.5-10,000	\$53.75
4F-FeO	by Titration	0.1%	\$23.75
$4F-H_2O\pm$	Gravimetric and IR	0.1%	\$30.75

* PGNAA (Prompt Gamma Neutron Activation Analysis)

Carbon/Sulphur Species, Acid Rock Drainage

Carbon & Sulphur Species

Determining carbon and sulphur species can provide valuable information on mineralogy, metallurgy, and environmental issues pre- and post-project evaluation.

Carbon & Sulpur Species				
Package	Price:			
4F - C,S (C 0.01-50% & S 0.01-30%) by IR	\$27.00			
4F - C-Organic (0.05%) by IR (calc)	\$62.25			
4F - C-Organic (0.02%) (non carbonate carbon)	\$37.75			
4F - C-Total (0.01% - 50%) by IR	\$21.25			
Add-on: if C > 50%	\$10.25			
4F - C-Graphitic (0.05%-50%) by IR	\$37.50			
4F - CaCO ₃ by IR (calc)	\$34.25			
4F - CO ₂ (0.01%) by IR	\$26.75			
4F - S (0.01% - 30%) by IR	\$21.25			
Add-on: if S > 30%	\$10.25			
4F - SO₃ (0.05%) by IR	\$29.00			
4F - SO ₄ (0.05%) by IR	\$29.00			
4F - S ²⁻ (0.01%) by IR	\$29.00			
4F -LOI	\$13.00			

5G - Carbon & Sulphur/Metallurgical Balance Package					
Element	Detection Limit	Price / Sample			
C-Total	0.01-50%				
C-Graphitic	0.05%				
C-Organic	0.5%	115.00			
CO ₂	0.01%	115.00			
S	0.01-30%				
SO ₄	0.05%				

Acid Rock Drainage

Code 11: Acid-Base Accounting: Acid Base Accounting (ABA) is used to make static measurements of Acid Rock Drainage potential. Measurements of total sulphur or sulphide sulphur are used to estimate the amount of acid bearing material. Using this information, the Neutralization Potential (NP), Acid Producing Potential (AP) and Net Neutralization Potential (Net NP) are reported.

The Sobek package is the original method described by Sobek for the US EPA. The Modified Sobek package is that by Lawrence and Wang. The Siderite correction package applies a method to limit the overestimation of Net NP in the Sobek method caused by the presence of siderite.

ABA packages					
Parameter	11-Acid/Base Package	11-Acid/Base Enhanced Package	11-Acid/Base Supreme Package		
AP	•	•	•		
NP	•	•	•		
Net NP	•	•	•		
MPA	•	•	•		
NP: MPA Ratio	•	•	•		
Paste pH	•	•	•		
Sulphur (total)	•	•	•		
Acid Soluble Sulphate		•	•		
Sulphide		•	•		
Sulphate (total)			•		
CO ₂			•		
Sobek Package	\$96.75	\$128.75	\$181.25		
Modified Sobek Package	\$161.75	\$192.50	\$248.25		
Siderite Correction Package	\$161.75	\$193.75	\$248.25		

Code 11: Net Acid Generation (NAG)

A direct oxidation method used to estimate the acid forming potential of a sample. The sample is reacted with hydrogen peroxide to oxidize any sulphide minerals present. The sample must be acid generating and not acid neutralizing. This causes acid generation and acid neutralization to occur simultaneously, with the end result being a direct measurement of the net amount of acid a sample can generate. If the reacted sample has a pH of 4.5 or less it is likely to be acid generating. Titration of the mixture is used to determine the amount of acidity generated. False positive results may occur if a high organic content is present. In order to analyze for metals in the leachate a full second leach must be performed; therefore, the procedure will be charged twice.

Price per sample: \$175.00

Code 12 – Leachate Quality					
Parameters	Leachate Extraction & Analysis	Parameters	Leachate Extraction & Analysis		
SWEP	•	EPA (includes metals and Hg)	•		
TCLP	•	MWEP (leach only for metals)	•		
Price	On request		On request		

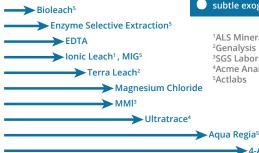
Selective Extractions

Selective Extractions (SE) are a cost-effective method of finding blind mineralization through deep cover such as exotic over burden, lake beds, barren bedrock, or younger volcanic rocks. Very subtle trace element signatures have been added to soil above mineralization by elements migrating to the surface through a variety of mechanisms. Some traps for these signatures include Mn oxides, clay, carbonates, and organic material. Varieties of Selective Extractions target different trap types to release the signal of mineralization. A weaker leach is required to isolate the signal of blind mineralization from that of the over burden. Conventional partial leaches, like aqua regia extraction- ICP, extract metals from sulphides, oxides and silicates. This provides a partial composition of the overburden which will contaminate the signal of the buried mineralization. Pattern recognition is the key to proper interpretation of SE data, since anomaly patterns can be different from conventional geochemical data. Selective extractions have been shown to work effectively in both acidic and alkaline environments, and have been used successfully in desert, tropical, glacial and permafrost terrains.

Enzyme Selective Extraction (ESE) is one of the most discriminating of the selective analytical extractions in use today. This selective extraction targets amorphous mixed oxide coatings. By selectively removing the amorphous manganese dioxide from these coatings, the mixed oxide coatings collapse, releasing trapped trace elements. At this time, the greatest depth of penetration of ESE for a mineral deposit is greater than 800 metres.

Bioleach uses technology proprietary to Actlabs. Through years of research by Actlabs, supported by CAMIRO (Canadian Mining Research Organization) with our SGH technology, it has been proven that microbiological processes are exceptionally important. Electrochemical Redox cells mobilize metals from the mineral deposit to the surface which become adsorbed on soil particles and create unique surficial conditions that bacteria then feed upon. Bioleach digests bacteria and their proteins from the collected surficial samples to analyze for the elements related to the blind mineralization.

MIG (Mobile lon Geochemistry) isolates the chemically active metal ions which were loosely adsorbed to soil particles. This is a weak leach that uses a solution of organic and inorganic compounds to extract target elements.


Preparation and Analysis

The recommended sample material is upper B-horizon soil sampled at a continuous depth. After materials are collected, they are air dried or dried in special rooms kept below 40°C. Samples then undergo the chosen SE under rigidly controlled conditions. The resultant solutions are analyzed by ICP-MS.

Add-ons:PriceFinal pH of leach solution\$10.75Conductivity of leach solution\$10.75pH and conductivity\$16.50Prewash, if required, on high salt samples\$4.25

Increasing Strength

Distilled H2O

Strong extractions dissolve more of the endogenic component. This can overwhelm the subtle exogenic signal.

¹ALS Minerals ²Genalysis ³SGS Laboralories Ltd. ⁴Acme Analytical Laboratories ⁵Actlabs

► 4-Acid⁵

Modified from Dave Heberlein, 2013

Selective Extractions					
Package	7-ESE Enzyme SE	7-EnhESE Enhanced Enzyme	7-SaltESE High Salt	7-Bioleach	7-MIG Mobile Ion Geochem
Ag	0.2	0.1	0.2	0.2	0.2
Al	0.5ppm	0.5 ppm	0.5 ppm	0.5 ppm	0.5 ppm
As	1	0.1	5	0.5	0.5
Au	0.05	0.005	0.1	0.05	0.05
Ba	1	0.5	1	1 0.07	1
Be	2 0.8	0.1 0.5	20 1		0.07
Bi Br	5	1	30	0.1	0.1 5
Ca	5 5 ppm	5 ppm	0.5 ppm	5 5 ppm	5 0.5 ppm
Cd	0.2	0.1	0.2	0.05	0.05
Ce	0.2	0.01	1	0.02	0.03
Cl	* 2000	* 1000	* 3000	-	-
Co	1	0.2	1	0.1	0.1
Cr	20	3	50	* 2	* 2
Cs	0.1	0.01	1	0.01	0.01
Cu	3	1	5	0.5	0.5
Dy	0.1	0.01	1	0.01	0.01
Er	0.1	0.01	1	0.01	0.01
Eu	0.1	0.01	1	0.01	0.01
Fe	1 ppm	1 ppm	1 ppm	1 ppm	1 ppm
Ga	1	0.3	1	0.1	0.1
Gd	0.1	0.01	1	0.03	0.03
Ge	0.5	0.05	1	0.05	0.05
Hf	0.1	0.01	1	0.04	0.04
Hg	* 1	* 0.1	* 1	* 0.05	* 0.05
Ho	0.1	0.01	1	0.01	0.01
1	2	1	10	1	1
In	0.1	0.01	0.2	0.1	0.1
К	5 ppm	5 ppm	5 ppm	5 ppm	5 ppm
La	0.1	0.01	1	0.01	0.01
Li	* 2	* 0.5	* 10	* 0.2	* 0.2
Lu	0.1	0.01	1	0.01	0.01
Mg	2 ppm	2 ppm	2 ppm	2 ppm	2 ppm
Mn	1	0.4	10	0.1	0.1
Mo	1	0.1	1	2	2
Na	5 ppm	5 ppm	-	-	-
Nb	1	0.1	1	0.2	0.2
Nd	0.1	0.01	1	0.03	0.03
Ni	3	1	5	0.2	0.2
Pb	1	0.1	1	0.1	0.1
Pr	0.1	0.01	1	0.01	0.01
Pt	1	0.5	1	0.5	0.5
Pd	1	0.5	1	0.5	0.5
Rb	1	0.1	1	0.1	0.1
Re	0.01	0.005	0.1	0.01	0.01
Ru	1	0.5	1	0.05	0.05
Sb Sc	0.1 *100	0.01 *10	1 *1000	0.2 *0.5	0.2 *0.5
Se	5	1	30	1	1
Se	0.1	0.01	1	0.03	0.03
Sn	0.8	0.2	1	0.05	
Sr	1	0.2	1	0.1	- 0.1
Ta	0.1	0.02	1	0.01	0.01
Tb	0.1	0.01	1	0.01	0.01
Te	1	0.5	1	1	1
Th	0.1	0.01	1	0.02	0.02
Ti	* 100	* 10	* 1000	-	-
TI	0.1	0.005	1	0.2	0.2
Tm	0.1	0.01	1	0.01	0.01
U	0.1	0.01	1	0.01	0.01
V	1	0.1	5	1	1
W	1	0.1	1	0.01	0.01
Y	1 0.5	0.05	1	0.02	0.02
Yb	0.1	0.01	1	0.02	0.02
Zn	10	5	10	2	2
Zr	1	0.1	1	0.5	0.5
Price:	\$44.25	\$57.75	\$57.75	\$44.25	\$44.25
	÷ · ···=>	<i>43113</i>	10/11/0	÷•••25	÷ · ··.25

All elements are in ppb except where noted. * Semi-Quantitative

Sequential leaches can target specific soil or rock phases and allow a better interpretation of the geochemical processes involved. A sample will undergo sequential leaching process starting with the weakest leach to the strongest leach with subsequent analysis of each of the leachates by ICP-MS.

Some of the potential leaches which can be combined sequentially include from the weakest to the strongest:

Code 7 - Deionized Water			For mobile metal components
	mineralogy.	Code 7 -	For amorphous Fe oxides and crystalline
Code 7 - Enzyme SE	Selectively goes after amorphous Mn oxides	Hydroxylamine Leach Cold	Mn oxides
Code 7 - Bioleach	A leach proprietary to Actlabs that has been designed	Code 7 - Hydroxylamine Leach Hot	For amorphous and crystalline Fe oxides and crystalline Mn oxides.
Code 7 - Sodium Acetate Leach pH 5	For exchangeable cations adsorbed by clay and elements co-precipitated with carbonates	Code 7 - Aqua Regia	Will leach sulphide species and clay minerals
Code 7 - Sodium Pyrophosphate Leach	0.1M leach for elements adsorbed by organic material (humic and fulvic components)	Code 7 - Four Acid	Will dissolve silicate remnant material

Price: \$49.25 / leach / sample (unless otherwise listed) Note: There is a \$245.00 set-up charge per leach chosen if there are under 10 samples.

Add-ons:	Price
Final pH of leach solution	\$10.75
Conductivity of leach solution	\$10.75
pH and conductivity	\$16.50

Sequential Leaches					
Package	7-Sodium Pyrophosphate Leach	7-Sodium Pyrophosphate HR-Leach	7-Sodium Acetate Leach	7-Hydroxylamine Leach	7-De-ionized water Leach
Ag	500	8	5	10	0.1
AI	10 ppm	-	5 ppm	10 ppm	0.5 ppm
As	300	160	30	40	0.1
Au	5	28	5	5	0.005
В	-	970	-	-	-
Ва	300	16	1000	50	0.5
Be	50	4	10	20	0.1
Bi	40	1	10	100	0.5
Br	300	2009	500	2000	1
Ca	500 ppm	20	200 ppm	700 ppm	5 ppm
Cd	20	1	10	5	0.1
Ce	40	8	3	2	0.01
Cl	-	-	-	-	* 1000
Co	50	4	5	5	0.2
Cr	* 500	* 24	* 100	* 5000	3
Cs	2	4	2	5	0.01
Cu	600	40	100	40	1
Dy	5	0.1	2	1	0.01
Er	1	0.1	1	1	0.01
Eu	5	0.1	1	0.5	0.01
Fe	50 ppm	400	5 ppm	10 ppm	1 ppm
Ga	20	400	10	5	0.3
Gd	5	0.1	1	1	0.01
Ge	300	4	5	10	0.05
Hf	5	0.4	2	5	0.03
	* 200	* 160	* 20	* 20	* 0.1
Hg Ho	1	0.04	0.5	0.5	0.01
I	1000	80	100	200	1
In	2	0.4	1	0.5	0.01
K	50 ppm	4000	20 ppm	50 ppm	5 ppm
La	20	8	20 ppm	2	0.01
Li	* 1000	* 120	* 100	* 50	* 0.5
Lu	1	0.04	0.5	0.5	0.01
	•	800			
Mg	10 ppm 300	400	5 ppm 100	10 ppm 40	2 ppm 0.4
Mn	40	16	20	20	0.4
Mo Na	40	18	20	50 ppm	5 ppm
Nb	20	- 0.4	- 1	0.5	0.1
Nd	20	0.4	2	2	0.01
	1000	200	30	80	1
Ni Pb	1000	12	40	20	0.1
	5				0.01
Pr Pt	100	0.1	0.5 100	0.5 100	0.5
		-			
Pd Rb	100 20	- 20	100 20	100 10	0.5 0.1
	1		0.5	0.5	
Re	100	0.4	0.5	0.5	0.005 0.5
Ru	20	- 4	100 5	100 5	0.01
Sb Sc	* 300	* 40	* 200	* 200	0.01 *10
				~ 200	
Se	700	600 1	600 2	200	1 0.01
Sm	10	1	2	2	0.01
Sn	- 100	24	10	100	0.2
Sr Ta	100	40	100	100	0.1
Ta	3 1	2	1	0.5	0.02
Tb	1	0.1	1	0.5	0.01
Te	200	4	50	10 0.5	0.5
Th	100	0.1	1	0.5	0.01
Ti	-	* 40	* 400	* 500	* 10
TI	100	0.4	0.5	1	0.005
Tm	1	0.4	1	0.5 0.5	0.01
U	200	0.4	1	0.5	0.01
V	200	2	20	500	0.1
W	30	4	10	5	0.1
Y	10	1	1	0.5 0.5	0.05
Yb	2	0.2	3	0.5	0.01
	1000	1600	2000	500	5
Zn	1000			10.5	
Zn Zr	100 \$49.25	4 \$67.00	80 \$49.25	400 \$49.25	0.1 \$49.25

All elements are in ppb except where noted. * Semi-Quantitative

Spatiotemporal Geochemical Hydrocarbons (SGH)

SGH is a dual-purpose geochemistry as it identifies and locates targets at depth as a vertical projection and has been used to successfully discover new previously un-drilled mineral deposits. SGH has been shown to be very robust to the use of different sample types even "within" the same survey or transect. This capability has been vital to the successful use of SGH in areas of difficult terrain. This enables the interpretation of a regular grid or set of transects as samples do not have to be missed due to the different sample types encountered.

Sample Type and Survey Design: A minimum of 50 sample locations per target is required to ensure that enough locations are used in a survey to obtain sufficient samples into background areas on both sides of small targets. More samples are recommended for large targets. SGH can also be used in regional surveys. Enough samples over both the target and background areas is critical in order to fully study the dispersion patterns or geochromatography of the SGH Pathfinder Classes of compounds. Samples should be "fist" sized (50-100 grams), can be drip dried in the field, and do not need special preservation for shipping.

Pricing for SGH: \$52.50 per sample. For large surveys volume discounts may apply, please inquire. Relative or UTM sample coordinates must accompany the samples when submitted to allow development of the SGH interpretation report. Please contact us to help you design your sampling program at no additional cost, in order to obtain the best possible SGH results for your survey. Pricing includes the delivery of an SGH interpretation report for one commodity type (e.g. Cu, Ni, Au, U, Kimberlite, etc.), for more complex targets (e.g. VMS, SEDEX, Polymetallic, IOCG, IOCGU, Cu-Au Porphyry, etc), **an extra price of \$525.00** is applied to cover the time for the additional interpretation required.

Sample preparation charges are additional (Code SGH-1).

SGH Case Study Examples *

Biogeochemistry

Code 2A - Humus

Code 2B - Vegetation: INAA provides a very cost effective, rapid means of analyzing humus or vegetation to very low detection limits for gold and many other elements useful for geochemical exploration. The organic material is dried below 60°C, macerated and a 15 g aliquot is compressed into a briquette and analyzed using Code 2A or Code 2B depending on whether the material is purely organic (Code 2B) or contains mineral matter (Code 2A). These briquettes are irradiated and their gamma ray spectra are measured and quantified. The advantages of this technique are simplicity (less chance of human error and contamination, ashing is costly and the results in loss of gold) and INAA is the technique with ultimate sensitivity for gold and other trace elements. Prices listed in Codes 2A and 2B are for standard 15 g briquettes. Selected elements may be available at lower costs.

Code 2C - Vegetation Ash INAA

Code 2C1 - Vegetation Ash-ICP-OES: Prices for Code 2C1 for single element is \$8.40 with each additional element costing \$3.10.

Code 2D - Vegetation Ash-ICP-MS: Some geologists prefer ashing samples at low temperature (480°C) and determining metals on the ash. This may be advantageous, particularly if base metals are also required for your gold project or for base metal exploration. Note when samples are ashed, there may be volatile loss of certain elements (Au, As, Br, Hg, Cd, etc). Results are reported on an as received basis. Code 2D uses a proprietary acid digestion on the ash followed by ICP-MS and extends the list of elements which are available. Not all elements may be total. This package can be quite useful for diamond exploration.

Code 2E: This package is similar to Code 2D but requires a different digestion of the plant ash to obtain Au, Pt and Pd to low levels. This method has been shown to be very effective for PGE exploration.

Code 2F: Dry vegetation samples are dissolved in acid and analyzed by High Resolution ICP-MS.

Code 2G: Dry vegetation samples are dissolved in acid and analyzed by ICP-MS.

Actlabs only ashes vegetation in dedicated vegetation ashing furnaces to avoid contamination.

	Humus INAA	Vegetation INAA	Ash Package INAA	Base Metal Vegetation Aqua Regia-ICP	Ash Package Digestion ICP-MS	Ash Package ICP-MS Au+Pt+Pd	Vegetation Unashed ICP-MS	Vegetation Unashed HR-ICP-MS
Package Ag	Code 2A 2	Code 2B 0.3	Code 2C 2	Code 2C1 0.2	Code 2D 0.2	Code 2E 0.2	Code 2G 3	Code 2F
Al	-	-	-	-	2	2	4 ppm	-
As	1	0.01	0.5	-	1	3	10	5
Au	1 ppb	0.1 ppb	5 ppb	-	-	5 ppb	0.2	0.1
B Ba	- 100	- 5	- 50	-	5 3	5 3	1 ppm 100	200 1 ppm
Be	-	-	-	-	0.005	0.08	30	0.1
Bi	-	-	-	-	0.05	0.05	2	1
Br	1	0.01	1	-	-	-	-	-
Ca Cd	0.5%	0.01%	0.2%	-	0.1% 0.01	0.1% 0.01	25 ppm 6	2 ppm 0.1
Ce	1	0.1	3		0.01	0.01	15	0.5
Co	1	0.1	1	-	0.01	0.01	4	0.5
Cr	1	0.3	1		1	10	100	10
Cs Cu	0.5	0.05	0.5	-	0.001 0.2	0.001 0.2	0.2 50	0.1 20
Dy	-	-	-	-	0.001	0.001	0.5	0.05
Er	-	-	-	-	0.001	0.001	0.4	0.05
Eu	0.2	0.05	0.01	-	0.001	0.001	0.2	0.1
Fe	0.05%	0.005%	0.05%		0.01%	0.01%	3 ppm 4	0.5 ppm
Ga Gd	-	-	-	-	0.1 0.01	0.1 0.01	4 0.4	0.5 1
Ge	-	-	-	-	0.1	0.1	3	10
Hf	0.5	0.05	0.5	-	0.01	0.01	0.4	2
Hg	0.5	0.05	1	-	-	-	2	5
Ho In	-	-	-	-	0.001 1 ppb	0.001 1 ppb	0.2 0.2	0.01 0.1
lr	- 5 ppb	- 0.1 ppb	2 ppb	-	-	-	-	-
K	-	0.01%	0.05%	-	0.01%	0.01%	10 ppm	10 ppm
La	0.1	0.01	0.1	-	0.002	0.002	10	0.2
Li	-	-	-	-	0.5	0.5	10	5
Lu Mg	0.1 -	0.001	0.05	-	0.001 0.01%	0.001 0.01%	0.5 2 ppm	0.2 0.5 ppm
Mn	-	-	-	1	0.1	0.1	100	10
Мо	0.5	0.05	2	1	0.1	0.1	10	1
Na	100	1	10		0.01%	0.01%	5 ppm	10 ppm
Nb Nd	- 3	- 0.3	- 5	-	0.005 0.002	0.005 0.002	2 5	0.5 0.2
Ni	10	2	50	1	5	5	50	0.1 ppm
Р	-	-	-	-	-	-	4 ppm	-
Pb	-	-	-	1	0.1	0.1	50	10
Pd Pr	-	-	-	-	0.002	3 ppb 0.002	0.2 1	2 0.5
Pt	-	-	-	-	-	2 ppb	0.2	2
Rb	20	1	5	-	0.01	0.01	10	10
Re	-	-	-	-	0.1 ppb	0.1 ppb	0.2	0.1
Rh	-	-	-	-	-	10 ppb	-	-
Ru Sb	- 0.1	0.005	0.1	-	0.02	0.02	- 10	0.2
Sc	0.1	0.01	0.1	-	0.5	0.5	-	1
Se	2	0.1	2	-	1	10	100	0.2 ppm
Si Sm	- 0.1	- 0.001	- 0.1		0.2% 0.001	0.2% 0.001	- 1	- 0.1
Sm	-	-	-	-	-	0.001	50	40
Sr	100	10	300	-	0.1	0.1	40	20
Та	0.5	0.05	0.5	-	0.001	0.001	0.2	0.1
Tb	0.2	0.1	0.5	-	0.001	0.001	0.2	0.02
Te Th	- 0.5	- 0.1	- 0.1	-	0.01 0.001	0.01 0.001	8 2	1 5
Ti	-	-	-	-	1	1	150	20
TI	-	-	-	-	0.001	0.001	1	0.5
Tm	-	-	-	-	0.001	0.001	0.1	0.05
U V	0.1	0.01	0.1	-	0.001 1	0.001 10	1 10	1 10
Ŵ	- 1	0.05	- 1	-	0.5	0.5	25	5
Y	-	-	-	-	0.001	0.001	2	0.2
Yb	0.1	0.005	0.05		0.001	0.001	0.4	0.4
Zn Zr	20	2	50	1	1 0.5	1 0.5	400 20	0.2 ppm 5
	- +20.00	+22 7F	+01 7F	- -				On
Price	\$28.00	\$32.75	\$31.75	\$14.75	\$36.75	\$45.50	\$47.50	Request
						5g Price	\$52.00	

Codes 2A, 2B, 2C, 2C1, 2D, 2E: all elements are in ppm, except where noted. Codes 2F, 2G: all elements are in ppb, except where noted.

5g Price

\$52.00

Hydrogeochemistry		ICP-MS	ICP-OES	PGE HR-ICP-MS	HR-ICP-MS	Au HR-ICP-MS
	Ag	0.2	5	-	0.002	-
All detection limits are in µg/L	AI	2	0.1mg/L	-	0.5	-
except where noted for naturally	As	0.03	30	-	0.02	-
occurring waters with low	Au B	- 3**	-	-	- 0.1	0.1ng/L
TDS <0.05%	Ва	0.1	- 20	-	0.01	-
	Be	0.1	20	-	0.001	-
Codo 6 is applicable only to patural waters	Bi	0.3	20	-	0.001	
Code 6 is applicable only to natural waters with low total dissolved solid content	Ca	700	0.1mg/L	-	5	-
(<0.05%). Any individual cations greater	Cd	0.01	2	-	0.001	-
than the dynamic range of the ICP-MS will	Ce	0.001	30	-	0.001	-
be reported as (>) unless the Overrange	Co	0.005	2	-	0.001	-
option is chosen. Samples submitted under	Cr	0.5	20	-	0.01	-
all Code 6 packages (with exception of Code	Cs	0.001	-	-	0.001	-
6 Dissolved and Code 6 Total Recoverable	Cu Dy	0.2 0.001	2	-	0.5 0.0005	-
	Er	0.001	-	-	0.00005	-
mentioned below) will be analyzed on the	Eu	0.001	-	-	0.00005	-
supernatant portion of waters as received,	Fe	10	0.01mg/L	-	1	-
acidified to pH <2 without filtration or	Ga	0.01	-	-	0.001	-
digestion. The Code 6 Dissolved package	Gd	0.001	-	-	0.00005	-
includes filtration with 0.45µ filters while the	Ge	0.1	-	-	0.001	-
Code 6 Total Recoverable Natural Waters	Hf	0.001	-	-	0.00005	-
package include water digestion according	Hg	0.2 (0.006+)	-	-	0.05	-
to EPA protocols. Samples will be analyzed	Ho	0.001	-	-	0.00001	-
on the supernatant portion of waters	In	0.001	-	-	0.0001	-
as received, acidified to pH <2 without	lr	-	-	1ng/L	-	-
iltration. For hydro samples being analyzed	K	30	0.1mg/L	-	1	-
by ICP-MS or by Ion Chromatography,	La Li	0.001	- 0.05mg/L	-	0.001 0.05	-
please include field TDS/conductivity	Lu	0.001	0.05mg/L	-	0.00005	-
measurements, if available.	Mg	2	0.1mg/L	_	0.2	_
Actlabe' unique High Possibution ICB	Mn	0.1	0.01mg/L	-	0.05	-
Actlabs' unique High Resolution ICP-	Мо	0.1	5	-	0.005	
MS water package provides unrivaled	Na	5	0.1mg/L	-	5	-
sensitivities for hydrogeochemical surveys	Nb	0.005	-	-	0.0001	-
on natural waters with low TDS.	Nd	0.001	-	-	0.0001	-
From Eppinger et al., 2013: 'Anomalous	Ni	0.3	5	-	0.5	-
concentrations of Ag, In, Sb, Th, U, W fall	P		0.02mg/L	-	-	-
in the exceedingly low ng/l concentrations	Pb	0.01	10	-	0.005	-
ranges discernible only with the HR-ICPMS	Pr Pd	0.001	-	- 1pg/l	0.00005	-
method'. Only HR-ICP-MS could see the	Pu Pt	-	-	1ng/L 0.5ng/L	-	-
deeply-buried Pebble Porphyry Copper	Rb	0.005	-	0.5Hg/L	0.005	
Deposit.	Re	-	-	-	0.0001	-
	Rh		-	0.5ng/L	-	
Water: 'Lower determination limits for cations	Ru	-	-	3	-	-
analyzed by HR-ICP-MS, a relatively new	S	-	1mg/L	-	-	-
technique available commercially since around	Sb	0.1	10	-	0.001	-
2005, are commonly two and perhaps three	Sc	1	-	-	0.01	-
orders of magnitude below those by standard	Se	0.2	20	-	5	-
CP-MS. As a consequence, the resulting	Si	200	0.1mg/L	-	-	-
dataset is robust and has few highly censored	Sm	0.001	-	-	0.0005	-
elements (i.e., those with "less than" values), an	Sn	0.1	10	-	0.01	-
inusual feature for water analyses. The lower	Sr Ta	0.04 0.001	10	-	0.01 0.0005	-
letermination limits for elements analyzed	Tb	0.001	-	-	0.00002	-
by HR-ICP- MS allow observation of element	Te	0.1	10	-	0.0002	-
patterns at exceedingly low concentrations	Th	0.001	-	-	0.00002	-
ranges.'	Ti	0.1	10	-	0.01	-
	TI	0.001	10	-	0.0001	-
Note: The prices for these packages are on the	Tm	0.001	-	-	0.0001	-
next page.	U	0.001	0.05mg/L	-	0.0001	-
	V	0.1	10	-	0.001	-
	W	0.02	10	-	0.001	-
	Y	0.003	10		0.0005	-
	Yb	0.001	-	-	0.00005	-
	Zn	0.5	5	-	0.5	-

0.5

0.001

-

Zn

Zr

0.5

0.01

-5

-

Hydrogeochemistry

The lab reserves the right to adjust the matrix of the samples to perform the testing required.

Code 6 - Hydrogeochemistry Package Prices 1-50 samples as received \$58.25 Code 6 - Natural Waters with low TDS (<0.05%) 51+ samples as received \$53.00 1-50 samples \$74.75 Code 6 - Total Recoverable Natural Waters with low TDS (<0.05%) 51+ samples \$69.75 1-50 samples \$74.75 Code 6 - Dissolved Natural Waters with low TDS (<0.05%) 51+ samples \$69.75 [†] Code 6 MB - Marine Water, Brines or other aqueous solutions with TDS > 0.05% \$89.50 Code 6 Overrange - Overrange elements in Code 6 MB reanalyzed by ICP-OES or ICP-MS if required add \$21.75 Code 6 ICP-OES - Hydrogeochemistry ICP-OES for 36 elements \$33.25 † Code 6 ICP-OES MB - Hydrogeochemisty ICP-OES for Marine Brines \$49.75 **Code 6 Hg** – Hg(+) option on separate sample by FIMS add \$28.75 Code 6 Boron - Boron add-on by ICP-MS add \$8.50 Code 6 Filter - Samples filtered with 0.45µ filter add \$18.00 Code 6 EXPER - Where % RSDs are required (1-4 elements only) \$75.75 Code 6 COC - Where Chain-of-Custody for legal defense is required \$75.00 Code 6 Au HR-ICP-MS - Au by High Resolution ICP-MS \$90.25 Code 6 HR-ICP-MS - Water analysis by High Resolution ICP-MS \$138.00 Code 6 PGE HR-ICP-MS - PGE by High Resolution ICP-MS \$106.00 Code 6 Acidify - With ultrapure nitric to pH <2 \$3.75

Samples submitted as natural waters, but with TDS >0.05% will be charged as 6MB.

Analysis of waste waters and other solutions are available, but at varying costs. Please inquire † Detection limits for samples with high dissolved solids such as marine waters or brines, may be elevated by a factor of 10-1000.

Code 6B-Ion Chromatography						
Analyte	Detection Limit (mg/L)	Analyte	Detection Limit (mg/L)			
Fluoride (F)	0.01	Nitrate (NO3)	0.01			
Chloride (Cl)	0.03	Phosphate (PO4)	0.02			
Bromide (Br)	0.03	Sulphate (SO4)	0.03			
Nitrite (NO2)	0.01					

First analyte: \$30.00 | Each additional: \$20.75 | All analytes: \$75.75

Miscellaneous Analyses		
Code 6C		Price
Acidity		\$25.50
Alkalinity (CaCO ₃) [includes carbonate (CO ₃) & bicarbonate (HCO ₃)]		\$25.50
Biological Oxygen Demand (BOD)		\$40.75
Bisphenol A (BPA)		\$78.00
BTEX (Benzene Toluene Ethylbenzene Xylene)		\$53.50
Chemical Oxygen Demand (COD)		\$46.25
Colour		\$20.75
Conductivity		\$8.50
Cyanide (Total CN)		\$39.75
Cyanide (Free CN)		\$82.50
Cyanide (Weak Acid Dissociable - WAD CN)		\$40.75
Glycols (Propylene & Ethylene)		\$50.00
Hardness (must also do Code 6 ICP-OES)		\$13.25
Microbiology (E.coli, Total Coliforms, Fecal Coliforms, Heterotrophic Plate Count)		\$48.25
NH ₃ + NH ₄ (must provide pH or also do Code 6C pH)		\$40.75
Oil and Grease (Total)		\$68.50
Oil and Grease (Mineral)		\$48.25
Oil and Grease (Vegetable)		\$48.25
PCBs (Total)		\$72.50
рН		\$9.75
Phthalates		\$105.75
Polyaromatic Hydrocarbons (PAH/PNA - 16 compounds)		\$198.50
Reactive Silica		\$27.75
Salinity		\$25.50
	1-5 samples	\$83.50
Sulphur (Elemental)	6+ samples	\$66.75
Total Dissolved Solids (TDS) (ISE)	·	\$25.50
Total Dissolved Solids (TDS) (Grav)		\$51.00
Total Kjeldahl Nitrogen (TKN)		\$40.75
Total Organic Carbon (TOC)		\$40.75
Total Petroleum Hydrocarbon (TPH-GRO/DRO) - C6-C10/C10-C28 for Gasoline/Die	sel Range	\$139.25
Total Phosphorous	U	\$20.75
Total Suspended Solids (TSS)		\$27.75
Trihalomethanes (THM)		\$53.50
Turbidity		\$13.25

Ion Chromatography

Miscellaneous Analyses

Actlabs 2025 CAD Geochemistry Schedule of Services & Fees

25

Ore-Assays

Assays provide quantitative determinations of elements in nonprocessed geological materials. Assays are usually required when samples are known or suspected to contain higher levels of metals. For lower levels, geochemical methods should be used. Prices listed in our fee schedule are for natural geologic materials and are not for metallurgical products. Metallurgical products such as tail samples and concentrates are handled separately to prevent contamination in the laboratory. These materials are charged at three times the prices listed in our fee schedule.

Note: Aqua Regia and 4-acid Assays may not be total due to the mineralogy present in the samples.

Aqua Regia "Partial" Assay (Code 8-AR-ICP-OES)				
Elements	Detection Limits			
Ag	3-1000 ppm			
As	0.01-10 %			
Cd	0.003-1 %			
Со	0.003-1 %			
Cu	0.001-50 %			
Fe	0.003-50 %			
Hg	0.001-1 %			
Mn	0.003-30 %			
Мо	0.003-5 %			
Ni	0.003-20 %			
Pb	0.003-15 %			
S	0.01-10 %			
Zn	0.001-20 %			
One Element	\$16.25			
Each Additional Element	\$3.25			
All Elements	\$25.25			

Note: Additional elements can be analyzed on request

4-Acid "Near Total" Assay (Code 8-4 Acid ICP-OES)		Sodium Peroxide "Total" Fusion	Assay (Code 8-Peroxide ICP-OES)
Elements	Detection Limits	Elements	Detection Limits
Ві	0.003-2 %	Al	0.01-50 %
Cd	0.003-2 %	As*	0.01-2 %
Со	0.003-10 %	В	0.05-5 %
Cr	0.1-5 %	Ве	0.001-1 %
Cu	0.001-50 %	Ca	0.01-50 %
Fe	0.01-50 %	Со	0.002-30 %
Li	0.001-5 %	Cr	0.01-50 %
Mg	0.1-40 %	Cu	0.005-50 %
Mn	0.003-5 %	Fe	0.05-70 %
Мо	0.003-10 %	К	0.1-50 %
Na	0.01-20 %	Li	0.01-30 %
Ni	0.003-20 %	Mg	0.01-30 %
Pb	0.003-15 %	Mn	0.01-50 %
S	0.01-50 %	Мо	0.001-5 %
Zn	0.001-30 %	Ni	0.005-30 %
		Pb	0.01-30 %
		S	0.01-60 %
		Sb	0.01-1 %
		Si	0.01-50 %
		Ti	0.01-50 %
		W	0.005-5 %
		Zn	0.01-50 %
One Element	\$19.25	One Element	\$22.25
Each Additional Element	\$3.25	Each Additional Element	\$3.75
All Elements	\$27.75	All Elements	\$39.25

*As >2% requires a special fusion, price on request

For concentrates, titration may be applicable. Please inquire.

For Code 8-Peroxide ICP-OES - additional elements available upon request For Code 8 - Peroxide ICP-OES - for As above 10%, analysis by INAA assay is recommended.

Individual Assays (Non-Processed Geological Material)	
Element	Price
Alumina - Al ₂ O ₃	\$25.25
Antimony - Sb	\$24.25
Arsenic - As	\$24.25
Barium (Instrumental) - Ba Barium (Gravimetric) - Ba	\$24.50 \$33.75
Beryllium - Be	\$24.25
Bismuth - Bi	\$24.25
Boron - B	\$22.25
Bromine - Br	\$24.25
Cadmium - Cd	\$24.25
Calcium (oxide) - CaO	\$25.25
Cerium - Ce	\$24.25
Chlorine - Cl	\$41.00
Chromium - Cr Cobalt - Co	\$24.25 \$22.25
Copper – see various total and selective methods on page 31	₽ZZ.Z5 -
Fluorine - F	- \$32.25
Gold - Au See Code 1	
Gold-Silver (Au-Ag) See Code 1A3	
Gallium - Ga	\$24.25
Germanium - Ge	\$24.25
Insolubles	\$24.25
Iron (oxide) - Fe ₂ O ₃	\$21.50
Lanthanum - La	\$20.75
Lead (total) - Pb	\$22.25
Lead (oxide) - PbO	\$28.75
Lithium - Li Loss on ignition - LOI	\$22.25 \$12.25
Mercury - Hg	\$22.00
Manganese (oxide) - MnO	\$22.50
Magnesium (oxide) - MgO	\$22.50
Moisture - H ₂ O (105 °C)	\$15.50
Molybdenum (total) - Mo	\$20.00
Molybdenum (oxide)	\$28.75
Molybdenum (sulphide)	\$27.75
Nickel - Ni	\$22.25
Nickel - Ni Sulphide	\$29.25
Niobium - Nb	\$22.00 \$22.50
Phosphorous (oxide) - P2O5 Platinum-Palladium-Gold (Pt-Pd-Au)	
	ode 1C, p.8
Potassium (oxide) - K ₂ O Rhenium - Re (in Mo concentrates)	\$22.50 \$51.00
Rhodium - Rh See Code 1C	
Selenium - Se	\$24.25
Silicon (oxide) - SiO ₂	\$22.50
Silver - Ag	\$31.25
Sodium (oxide) - Na ₂ O	\$22.50
Specific Gravity - S.G.	\$18.25
Specific Gravity (wax encapsulation)	\$26.00
Strontium - Sr	\$22.00
Sulphur (Infrared)	\$20.50
Sulphur (Gravimetric) - S Sulphate - SO₄	\$33.75
Tantalum - Ta	\$27.00 \$22.00
Tellurium - Te	\$22.00
Thallium - Tl	\$22.00
Thorium - Th	\$22.00
Tin - Sn	\$22.00
Titanium (oxide) - TiO ₂	\$22.50
Tungsten (oxide) - WO₃	\$22.50
Uranium (oxide) - U₃O ₈	\$30.75
Vanadium (oxide) - V2O5	\$22.50
Zinc (total) - Zn	\$22.25

Concentrates


Code Conc: Analysis of mine concentrates is a critical step for purchase and sale of commodities as well as optimizing recoveries. Control Assays require the highest degree of accuracy and precision.

Code Conc				
Element	Range	Method	Price:	
Ag	0.0-99.99%	Fire Assay – Gravimetric Finish	\$144.25	
Cu	0.5-100%	Titration	\$118.50	
Fe	10-100%	Titration	\$123.50	
Pb	0.5-100%	Titration	\$118.50	
U	10-100%	Titration	\$113.25	
Zn	0.5-100%	Titration	\$118.50	
8-Au, Pt, Pd	>1000 g/t	Fire Assay-ICP	\$149.25	

Bullion

Bullion				
Element	Range	Method	Price	
Au	0.1 - 99.99%	Au-fire assay – Gravimetric finish	\$144.25	

*Two replicate results reported

For processed material, analysis is available upon request

Heavy Mineral Concentrates

Code 3A: Heavy Mineral Concentrates (Thermal Irradiation) Heavy mineral concentrates prepared from reverse circulation drilling samples or from panned concentrates are expensive to collect. The nugget effect may require that the entire sample be analyzed to ensure that the few particles of gold which may be present can be measured. With INAA the whole concentrate can be analyzed without grinding the samples. The sample is therefore preserved for other chemical or mineralogical work. Actlabs only irradiates with thermal neutrons so as to avoid low gold values due to self-shielding effects from irradiation with epithermal neutrons. The price varies depending on the volume of concentrate to be analyzed.

There are 3 vial sizes available:

Small (2g) \$28.25 | Medium (20g) \$32.25 | Large (60g) \$38.75 Actual weight may vary depending on mineralogy.

Code 3C: HMC Base Metals by Aqua Regia ICP

When the analyses by INAA are completed, the sample is available to determine additional elements by other analytical techniques. Code 3C is a frequently requested Aqua Regia extraction ICP-OES package (0.5g required). First element price for Code 3C is \$10.50 with each additional element costing \$4.75. All elements \$17.50. Code 3C may require the sample to be pulverized finer, if coarser than +177 µm at an additional cost

	HMC Thermal (ppm)	HMC Base Metals (ppm)
Package	Code 3A	Code 3C
Ag	5	0.2
As	2	-
Au	5 ppb	-
Ba	200	-
Br	5	-
Ca	1%	-
Cd	-	0.5
Ce	3	-
Со	5	-
Cr	10	-
Cs	2	-
Cu	-	1
Eu	0.2	-
Fe	0.02%	-
Hf	1	-
Hg	5	-
lr	50 ppb	-
La	1	-
Lu	0.05	-
Mn	-	2
Mo	20	2
Na	0.05%	-
Nd	10	-
Ni	200	1
Pb	-	2
Rb	50	-
S	-	100
Sb	0.2	-
Sc	0.1	-
Se	20	-
Sm	0.1	-
Sr	0.2%	-
Та	1	-
Tb	2	-
Th	0.5	-
U	0.5	-
W	4	-
Yb	0.2	-
Zn	200	1

29

Actlabs offers exploration techniques for specific deposit types.

Bauxite

Code 8 - Bauxite: Li borate fusion/XRF Price: \$39.25				
Elements	Detection Limits	Elements	Detection Limits	
Al ₂ O ₃	0.01 - 100 %	Na₂O	0.01 - 100 %	
BaO	0.01 - 100 %	P ₂ O ₅	0.002 - 100 %	
CaO	0.01 - 100 %	SiO ₂	0.01 - 100 %	
Cr ₂ O ₃	0.005 - 100 %	TiO ₂	0.01 - 100 %	
Fe ₂ O ₃	0.01 - 100 %	V ₂ O ₅	0.005 - 100 %	
K ₂ O	0.01 - 100 %	ZrO ₂	0.01 - 100 %	
MgO	0.01 - 100 %	LOI 1000°C	0.01 - 100 %	
MnO	0.01 - 100 %			

Option: Code 4F - Sulphate SO4 (0.3% by Infrared) Price: \$28.10

Chromite

Chromite assays are usually combined with major oxide analysis as other elements are required for the metallurgical use of the chromite. Cr/Fe ratios are very important in assigning value to chromite as well as other deleterious elements.

Code 8 - Chromite Assay by XRF Price: \$39.25				
Elements	Detection Limits	Elements	Detection Limits	
Al ₂ O ₃	0.01%	MnO	0.01%	
CaO	0.01%	Na₂O	0.01%	
Cr_2O_3	0.01%	NiO	0.01%	
CO ₃ O ₄	0.01%	P2O5	0.01%	
CuO	0.01%	SiO ₂	0.01%	
Fe ₂ O ₃	0.01%	TiO ₂	0.01%	
K ₂ O	0.01%	V ₂ O ₅	0.01%	
MgO	0.01%	LOI	0.01%	

For options for Platinum Group Element (PGE) analysis, see page 8 or contact us to discuss.

Coal

Code 8-Coal Package				
Parameter	ASTM Method	Price		
Sample Preparation (up to 5 kg)	D2013	\$34.25		
Dry Screen Analysis (1 kg) (first fraction)	D4749	\$88.75		
Specific Gravity (Relative Density)	D167	\$61.25		
Total Moisture (TM)	D3302	\$30.50		
Proximate Analysis (Ash, Inherent Moisture, Volatile Matter)	D3172	\$84.75		
Calorific Value (CV)	D5865	\$85.25		
Total Sulphur	D4239	\$56.75		
Forms of Sulphur (including sulphates, pyritic sulphur and organic S)	D2492	\$166.50		
Mercury	D3684	\$179.75		
Equilibrium Moisture	D1412	\$100.50		
Ash Fusion Temperature (Reducing, Oxidizing, Combined)	D1857	\$303.00		
Bulk Density	-	\$67.00		
F in coal	-	\$92.75		
Cl in coal	-	\$92.75		
Loss on Ignition 750°C	ASTM D7348	\$36.00		

50% surcharge for less than 3 samples

	Major and T	race Elements on ash (pp	m, except where noted) P	Price: \$260.50	
Elements	Detection Limits	Elements	Detection Limits	Elements	Detection Limits
SiO ₂	0.01%	Cr	5	Rb	2
Al ₂ O ₃	0.01%	Cs	0.5	S	0.001%
Fe ₂ O ₃	0.01%	Cu	1	Sb	0.2
MgO	0.01%	Dy	0.1	Sc	0.1
MnO	0.005%	Er	0.1	Se	3
CaO	0.01%	Eu	0.05	Sm	0.1
TiO ₂	0.001%	Ga	1	Sn	1
Na ₂ O	0.01%	Gd	0.1	Sr	2
K ₂ O	0.01%	Ge	1	Та	0.1
P ₂ O ₅	0.01%	Hf	0.2	Tb	0.1
LOI	0.01%	Ho	0.1	Th	0.1
Ag	0.5	In	0.2	TI	0.1
As	0.5	lr	5 ppb	Tm	0.05
Au	2	La	0.1	U	0.1
Ba	2	Lu	0.01	V	5
Be	1	Мо	2	W	1
Bi	0.4	Nb	1	Y	1
Br	0.5	Nd	0.1	Yb	0.1
Cd	0.5	Ni	1	Zn	1
Ce	0.1	Pb	5	Zr	2
Со	1	Pr	0.05		

Coltan

Samples not requiring rare earths can be analyzed by fusion with lithium metaborate/ tetraborate in platinum crucibles with the molten glass cast into a glass disc in platinum crucibles. These glass discs are analyzed by XRF. Generally low Ta₂O₅ detection limits can not be achieved with this package and the INAA technique is recommended for tantalum.

Coltan XRF		INAA Option	
Elements	Detection Limts (%)	Elements	Detection Limts (ppm)
Ta ₂ O ₅	0.003	Та	0.5
Nb ₂ O ₅	0.003	Th	0.2
U ₃ O ₈	0.005	U	0.5
ThO ₂	0.005	La	0.5
ZrO ₂	0.003	Ce	3
Fe ₂ O ₃ (T)	0.01	Nd	5
P ₂ O ₅	0.01	Sm	0.1
SnO ₂	0.003	Eu	0.2
Y2O₃	0.003	Yb	0.2
WO ₃	0.003	Lu	0.05
Price:	\$44.25	Price: First element	\$27.75
Coltan Concentrates > 10% Nb ₂ O ₅ + Ta2O5: \$123.50		Each additional	\$1.50

Major Oxide Opt	tion Price: \$31.00	
Detection Limts	Elements	Detection Limts
0.01%	MnO	0.005%
0.01%	Na ₂ O	0.01%
0.01%	NiO	0.003%
0.005%	SiO ₂	0.01%
0.005%	TiO ₂	0.01%
0.01%	V ₂ O ₅	0.005%
0.01%	LOI	0.01%
	Detection Limts 0.01% 0.01% 0.01% 0.005% 0.005% 0.01%	Detection Limts Elements 0.01% MnO 0.01% Na2O 0.01% NiO 0.005% SiO2 0.005% TiO2 0.01% V2O5

Code 8 - Total Copper

Copper

Parameter Detection Limit		Detection Limit	Price			
Cu – Aqua Regia Digestion – ICP-OES		0.001 %	\$16.25			
Cu - 4-Acid Digestion - ICP-O	ES	0.001 %	\$19.25			
Cu - Na Peroxide Fusion - ICF	P-OES	0.005 %	\$22.25			
	Code 8 - Copper Oxide					
Parameter		Method	Price			
Copper Oxide (carbonates) Cu (acid soluble) by Sulphuric Acid (H ₂ SO ₄) - leach AA Cu (acid soluble) by Citric Acid leach AA		\$18.00				
		ו (acid soluble) by Citric Acid leach AA				
Copper Oxide + secondary	Cu (CN s	oluble) Sodium Cyanide (NaCN) - leach AA	\$24.50			
Culudatala						

Sulphides \$20.50 Cu (Ferric Sulphate soluble) by Ferric Sulphate/H₂SO₄ leach AA

Code 8 - Sequential Copper Leach

Parameter	Price
Sequential leach using Cu (acid soluble) H₂SO₄ acid, cyanide leach and 4-acid digestion on final residue	\$62.75

Code 8 - Graphite

Other leaches may be available on request. Contact us to discuss your requirements.

Graphite

Industrial Minerals

Options:

Parameter	Parameter Detection Limits		Price	
C - Graphitic (Infrared)		0.05 %		\$36.00
C - Total		0.01 %		\$20.25
CO ₂		0.01 %		\$24.50
% Ash Yield				\$32.00
Liberation and Grain Siz	e (by MLA)			On request
8-Graphite		>50 %		\$39.25
Code 8	3 - Clay, Limes	tone, Dolomite, Gypsum, Phosphate	Price: \$37.00	
Elements	Suit	able for samples containing < 500 ur	anium.	Price
Al ₂ O ₃		0.01 - 100 %		
CaO		0.01 - 100 %		
Cr ₂ O ₃		0.01 - 100 %		
Fe ₂ O ₃		0.01 - 100 %		
K₂O		0.01 - 100 %		
MgO		0.01 - 100 %		
MnO		0.01 - 100 %		
Na ₂ O		0.01 - 100 %		
P2O5		0.002 - 100 %		
SiO ₂		0.01 - 100 %		
TiO ₂		0.01 - 100 %		
LOI 1000°C		0.01 - 100 %		
		Code 4F - Sulphate (SO ₄ - 0.3% by Infrar	red)	\$27.50

\$23.75

Code 4F - Carbonate (CO₂ - 0.01% by IR or Coulometry)

Iron Ore

Davis Tube Recovery - Recoveries of ferromagnetic products are evaluated by Grind Size and Magnetic Field Strength (Gauss). To determine the chemical composition, the magnetic and non-magnetic recoveries can be analyzed using a Lithium Metaborate fused disc and analysis by XRF. Contact Actlabs to discuss your requirements as procedures are very ore-specific.

	Code 8: Iron Ore (XRF) Pr		RF) Price	e: \$37.00			
Oxides	Detection	Limits (%)	0	Dxides	Detection L	imits (%)	
SiO ₂	0.01		CaO		0.0	0.01	
TiO ₂	0.0)1	Na ₂ O		0.0	0.01	
Al ₂ O ₃	0.0)1		K ₂ O	0.0	1	
Fe ₂ O ₃	0.0)1		P_2O_5	0.0	0.01	
V ₂ O ₅	0.0	0.003		Cr ₂ O ₃	0.0	1	
MnO	0.005			LOI	0.0	1	
MgO	0.01						
Add-ons	Price	Add-c	ons	Price	Add-ons	Price	
		Satmagan Te	st	\$22.00	FeO by titration	\$22.75	
Davis tube magnetic separation	\$74.75	Metallic Fe by	y titration	\$118.50	TGA Analysis	\$273.00	
Separation		Total Fe by ti	tration	\$118.50			

Lithium Ore

Code 8: Lithium Ore	
Lithium Ore	Price
Li assays by Peroxide Fusion ICP-OES (reporting range 0.01-30%)	\$22.25
Li assays by 4-Acid Digestion ICP-OES (reporting range 0.001-5%)	\$19.25
Li assays on brines by ICP-OES (detection limit 0.05 mg/L)	\$19.50
Any of the above packages can be converted to multielement analysis. Common elements requested are B, Ca, K, Mg.	\$22.25

Notes:For geochemical packages, see Code 1F2 (Page 10) for 4-Acid Digestion ICP or Code Ultratrace 7 (Page 16) for Peroxide Fusion ICP-OES+ICP-MS.

Code 6MB for Multielement brine package.

Code	8 - Manganese Ore: - Li bo	orate fusion/XRF Price: \$	39.25
Elements	Detection limits	Elements	Detection limits
Mn	0.01 - 80 %	MgO	0.01 - 100 %
Al ₂ O ₃	0.01 - 100 %	Na2O	0.01 - 100 %
BaO	0.01 - 100 %	P ₂ O ₅	0.002 - 100 %
CaO	0.01 - 100 %	SiO ₂	0.01 - 100 %
Cr ₂ O ₃	0.005 - 100 %	TiO ₂	0.01 - 100 %
Cu	0.005 - 5 %	V ₂ O ₅	0.005 - 100 %
Fe ₂ O ₃	0.01 - 100 %	LOI 1000°C	0.01 - 100 %
K ₂ O	0.01 - 100 %		

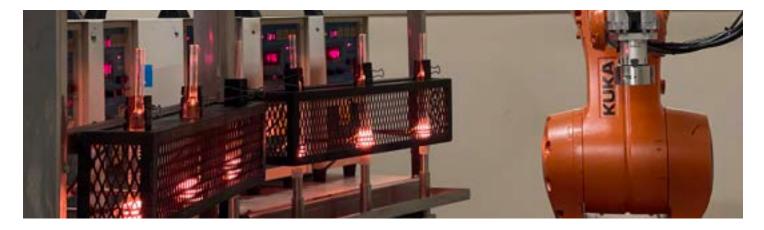
Nickel Laterite

Manganese Ore

	Code 8 - Ni Laterite	Price: \$38.00	
Elements	Detection limits	Elements	Detection limits
Al ₂ O ₃	0.01%	MnO	0.005%
CaO	0.01%	Na ₂ O	0.01%
Cr ₂ O ₃	0.01%	NiO	0.03%
CO ₃ O ₄	0.005%	P ₂ O ₅	0.01%
CuO	0.005%	SiO ₂	0.01%
Fe ₂ O ₃	0.01%	TiO ₂	0.01%
K ₂ O	0.01%	V ₂ O ₅	0.003%
MgO	0.01%	LOI 1000°C	0.01%

Oil Shale

These analytical methods are used in exploration programs to determine the anticipated shale oil yield and to better delineate core characteristics.


	Code 8 - Oil Shale		
Analytical Method	Description	Price/ sample	
Sample	Wash, grind, homogenize 40 mesh	\$13.00	
Preparation	Grinding for Fischer Assay	\$32.50	
Rock-Eval 2	S1 - hydrocarbons evolved at 300°C (mg/g)		
Pyrolysis	S2 - hydrocarbons evolved between 300 and 600°C (mg/g) heating at 25°C/min		
	S3 - organic carbon dioxide evolved at 300°C and up to 390°C (mg/g)	\$233.00	
	Production Index, Hydrogen Index, Oxygen Index and TMAX (MUST ANALYZE TOC TO OBTAIN HI AND OI)	4200100	
	Total Organic Carbon (LECO)		
Rock-Eval 6 Pyrolysis	Programmed pyrolysis + TOC + CO ₂	\$338.75	
Fischer	Free water - moisture (wt%) by oven drying		
Assay-ASTM D3904	Retort water (wt% and L/tonne)		
	Oil yield (wt% and L/tonne)		
	Gas yield (wt% and L/tonne)	\$257.50	
	Spent shale (wt%)		
	Gas average molecular weight		
	Oil relative density		
Elemental	Total carbon, sulphur	\$29.75	
Analysis	Total organic carbon	\$64.50	
	Pyritic Sulphur	\$77.50	
	Sulphate Sulphur	\$51.75	
	Mercury	\$179.75	
	Fluoride	\$77.50	
	Mineral Identification	\$244.75	
Whole Rock Analysis	A whole rock analysis is performed to provide chemical analysis of inorganic components of the rock	\$55.50	
Trace Metal Analysis	Near total digestion is performed and a full trace metal scan by ICP shall be conducted to include at least the following elements: Cu, Pb, Zn, Fe, W, Mo, Sn, In, Bi, Cd, Sb, F, Nb, Ta, Th, Cs, Y, As, Ag, U and V.	\$45.50	

Potash

Includes moisture, insoluble residue left from the water soluble component and the ICP-MS, ICP-OES soluble multielement suite.

	Code 8: Potash (pp	m) Price: \$92.00	
Elements	Detection Limt (ppm)	Elements	Detection Limt (ppm)
Al ₂ O ₃	0.01%	La	1
CaO	0.01%	Li	1
Fe ₂ O ₃	0.01%	Мо	1
K ₂ O	0.01%	Nb	1
MgO	0.01%	Nd	1
MnO	0.01%	Ni	1
Na ₂ O	0.01%	Pb	1
P ₂ O ₅	0.01%	Pr	1
TiO ₂	0.01%	S	10
Ag	0.2	Sc	1
Ва	1	Sm	1
Be	0.2	Sn	1
Cd	1	Sr	1
Ce	1	Та	1
Со	1	Tb	1
Cr	1	Th	1
Cu	1	U	2
Dy	0.2	V	1
Er	0.2	W	1
Eu	0.2	Y	1
Ga	1	Yb	0.1
Gd	1	Zr	1
Hf	1	Zn	1
Но	1		

33

Rare Earth Elements

(Code 8 - REE Assay) Rare Earth Element-Niobium-Zirconium-Yttrium-Tantalum-Uranium-Thorium-Beryllium-Phosphate-Tin Assay ICP-OES and ICP-MS Package

Rare earths and rare elements are among the most difficult to analyze properly. It is essential that the sample be ground to 95%-200 mesh to ensure complete fusion of resistate minerals. The analysis requires a lithium metaborate/tetraborate fusion with subsequent analysis by ICP-OES and ICP-MS. Mass balance is required as an additional quality control technique and elemental totals of the oxides should be between 98 to 101%. In certain circumstances the presence of small amounts of phosphate will have very severe consequences to Nb2O5 assays by this method with results being very low for Nb2O5. Reanalysis is required for Nb2O5 by fusion XRF. In many cases these types of deposits may contain high amounts of fluorite. This should be noted on the Request for Analysis form or F assays should be requested. This will speed up processing as mass balance won't be achieved otherwise and a delay in returning results will ensue as samples get repeated.

IN NO CIRCUMSTANCES SHOULD AN ACID DIGESTION OF ANY TYPE BE USED TO EVALUATE THE ELEMENTS BELOW AS THEY WILL ONLY BE PARTIAL ANALYSIS.

Fusion ICP-OES & ICP-MS, Elements and Detection Limits (ppm, except where noted) \$86.50				
Elements	Detection Limits	Elements	Detection Limits	
Al ₂ O ₃	0.01%	Rb	2	
CaO	0.01%	Sb	0.5	
Fe ₂ O ₃	0.01%	Sc	1	
K ₂ O	0.01%	Sn	1	
MgO	0.01%	Sr	2	
MnO	0.005%	Та	0.1	
Na₂O	0.01%	Th	0.1	
P2O5	0.01%	TI	0.1	
SiO ₂	0.01%	U	0.1	
TiO ₂	0.001%	V	5	
LOI	0.01%	W	1	
Ag	0.5	Y	2	
As	5	Zn	30	
Ва	3	Zr	4	
Be	1	La	0.1	
Bi	0.4	Ce	0.1	
Со	1	Pr	0.05	
Cr	20	Nd	0.1	
Cs	0.5	Sm	0.1	
Cu	10	Eu	0.05	
Ga	1	Gd	0.1	
Ge	1	Tb	0.1	
Hf	0.2	Dy	0.1	
In	0.2	Ho	0.1	
Мо	2	Er	0.1	
Nb	1	Tm	0.05	
Ni	20	Yb	0.1	
Pb	5	Lu	0.04	

If samples contain >0.3% P2O5, results may be semi-quantitative for Nb, Ta, Zr and Hf as results may be low by ICP-MS. Nb₂O₅ and ZrO₂ is recommended to be replaced by fusion XRF.

Add-ons:

Code 8 - XRF Nb₂O₅, ZrO₂ and Ta₂O₅ (0.003%) \$25.75

Code 4F - F (0.01%) by ISE \$32.25

Note: Chalcophile elements are semi-quantitative. An additional fee will be incurred if assays are required

Uranium

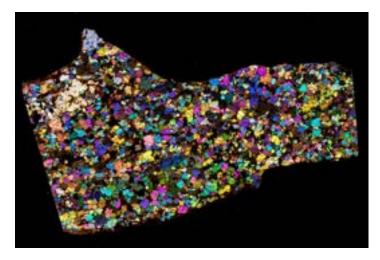
Code 8 - Uranium: Total uranium can be determined by delayed neutron counting using an automated system at a nuclear reactor. The principle advantage of this is to provide very rapid and accurate assays for high volumes of samples at a very low cost. The upper limit of this technique is 1% U. Results can be reported as U or U3O8. From 1 to 10% U3O8 fusion XRF will provide the best quality assay results and above 10% U3O8 titration is recommended for accuracy.

Acid digestion using both aqua regia "partial" and 4-acid "near total" digestion with ICP-MS is also possible but uranium in resistate phases (zircon, monazite, etc) may not be included in the assays. "Near Total" digestions may not be total for uranium depending on mineralogy. Hydroflouric acid is used in the digestion and some uranium may be volatilized due to combination with the HF.

Code 8 - Uranium	Price
Code 5D - U ₃ O ₈ Assay DNC (0.1 ppm - 1% U3O8)	\$20.25
Code 8 - U ₃ O ₈ Aqua Regia "Partial" Digestion by ICP-MS	\$21.75
Code 8 - U3O8 Assay by XRF (0.005%- 10% U3O8)	\$30.75
Code 8 - U ₃ O8 4-Acid "Near Total" by ICP-MS	\$24.00
Code 8 - U_3O_8 Titration (>10% U_3O_8)	\$45.75
Geochem V, U by XRF Pressed Pellet	\$15.25

Radionuclides

Naturally-Occurring Radioactive Materials (NORM) consist of radioactive material that comes out of the earth's crust and mantle. Human activity results in increased radiological exposure. Industries, excluding uranium mining and all associated fuel cycle activities, are known to have NORM issues, include coal mining and combustion, oil and gas production, metal mining and smelting, mineral (rare earth, titanium and zirconium), fertilizer (phosphate), building and recycling.


Actlabs provides NORM radiological testing to determine whether materials meet the safe limits for handling, disposal and transportation. The following radionuclides are usually regulated under the NORM guidelines: **Uranium²³⁸ Series**, **Thorium²³⁰**, **Radium²²⁶**, **Lead²¹⁰**, **Thorium²³²**, **Radium²²⁸**, **Thorium²²⁸** and **Potassium⁴⁰**.

Solids and waters are analyzed using a Gamma Spectroscopy method for the NORM radioactive elements.

Code 14 - Radiochemical Test Packages						
The following radiochemic	The following radiochemical tests are offered for both geological (solid, water, vegetation, sediment, soil and rock) and environmental materials.					
Pricing availible upon requ	iest					
Nuclide	Method	Water - Detection Limit	Solid - Detection Limit	Price - Water	Price - Solid	
Ra226	Alpha Spectrometry	0.005 Bq/L	0.01 Bq/g	\$256.00	\$297.25	
Gross α, Gross β	L/B Alpha, Beta Counting	α = 0.05 Bq/L; β = 0.15 Bq/L	α = 0.05 Bq/g; β = 0.15 Bq/g	\$170.00	\$170.00	
Pb210	L/B Alpha, Beta Counting	0.01 Bq/L	0.1 Bq/g	\$283.50	\$326.00	
Po210	Alpha Spectrometry	0.01 Bq/L	0.01 Bq/g	\$248.50	\$291.00	
Th230 and Th232	Alpha Spectrometry	0.01 Bq/L	0.01 Bq/g	\$283.50	\$326.00	
Ra228	Beta Counting	0.01 Bq/L	0.04 Bq/g	\$283.50	\$326.00	

Applied Mineralogy and Metallurgy

MLA & QEMSCAN Services

Applied Mineralogy is a discipline of mineralogy by which the unknowns and problems encountered during different mining steps can be approached and solved. Applied Mineralogy can be used to characterize the ore body, identify and quantify target minerals and their associations, and reveal the liberation, locking and grain size of the favoured phases; The data provided by Applied Mineralogy is essential for ore characterization, optimizing recovery and mineral processing plans.

Geometallurgy is an integrated methodology and multi-disciplinary field which aims to add value to a mineral deposit or resource while looking ahead at risk- reduction, improved decision-making and cost-effective down-stream activities (e.g. development, prefeasibility, feasibility and production). The objective of successful Geometallurgy is quality ore- characterization and establishing links and relationships between geology, mineralogy and processing characteristics.

For quantitative mineralogical analyses, Actlabs is equipped with FEI Quanta 650F MLA and QEMSCAN 650F instruments; they are stateof the-art Scanning Electron Microscopes (SEM) with superior resolution and performance over typical SEM systems. The Field Emission Gun source makes for significantly higher resolution analysis relative to regular MLA and QEMSCAN technology. Actlabs' Quanta 650F MLA and QEMSCAN 650F provide rapid, automated, non-destructive quantitative micro analysis used for integrated mineralogical and petrographical analyses.

Actlabs offers mineralogical analysis of assay rejects, drill core, RC drilling chips, plant samples and most other forms of man-made and natural materials. MLA can be applied to precious metals (Au, Pt, Pd, Ag), base metals (Cu, Ni, Co, Pb, Mo, Zn), ferrous and non-ferrous raw materials (Fe, Sn, Mn, W, Ta, Nb, U and REE), mineral sands, and graphite bearing rock.

Deliverable services for Geometallurgy and Applied Mineralogy

Quantified Modal Mineralogy Analysis

A rapid and efficient solution for identifying and quantifying the minerals present with detection limit of 0.1%. The measurement can be done on both thin section and polished section.

Particle and Grain Data Analysis

This type of analysis provides information on texture variations, size distribution of the target minerals, as well as locking and liberation characteristics for the ore minerals. Theoretical grade/recovery curve and association of the ore mineral with the gangue is also provided by this analysis.

Specific Phase Search (Including specific packages for Gold and Silver minerals)

This type of analysis is suitable to find PGM, low-grade levels of ore minerals, and other low-grade minerals like gold and silver. Trace and pathfinder phases can also be characterized. Once trace phases have been identified, data such as grain size distribution, classified images and particle counts can be provided. Actlabs has extensive experience in mineralogical analyses of precious metals as well as the ore minerals. Using our FEG (Field Emission Guns) equipped QEMSCAN/MLA we are able to find and characterize fine micron-sized or sub-micron sized (>0.3 µm) Gold or Silver particles locked in the pyrites, quartz and other gangue minerals. We can perform total precious metal deportment using FEG.

SE/BSE Imaging & Spectrum

Field Emission Gun technology enables us to take high-quality Backscattered Electron (for textural) and Secondary Electron (for topo- graphic) images. In addition, both our MLA and QEMSCAN are equipped with two BRUKER SSD EDS detectors. The combination of detectors with the high intensity bright FEG source provides rapid and therefore low-cost analysis for the customer.

Electron Probe Micro-analyzer

Whenever the major and minor elements of a mineral shall be identified and quantified with a high precision, EPMA in-situ analyses will be the solution. Actlabs has a procedure for oxides, silicates, sulphides and sulphates as well as alloys. EPMA analysis can be done in conjunction with MLA and QEMSCAN measurements as a complementary method.

Petrographic Analysis

For detailed description the rock, its mineralogy and textural relationships, as well as identification of the Coal components, Actlabs employs transmitted/reflected petrographic microscopy (Olympus BX52) on polished thin sections and polished sections.

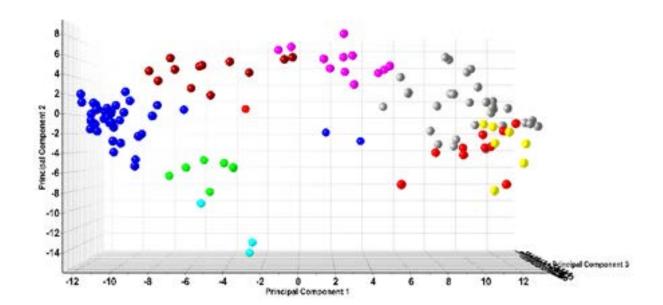
For more details and quotation inquiries, please contact geometallurgy@actlabs.com.

Applied Mineralogy and Metallurgy

X-Ray Diffraction

Most minerals are crystalline and therefore scatter X-rays in a regular, characteristic way dependent on their crystal structure. Each mineral produces a unique diffraction pattern and can be identified from that pattern like a fingerprint. Identification of minerals is made by comparing their diffraction patterns with a library of over 17,000 mineral patterns stored in the International Centre for Diffraction Data (ICDD). Detection limits depend on the sample. For geological material, it is estimated that the minerals present in less than 2% of the sample might not be detected. The samples for X-ray diffraction analysis are ground or milled to a fine powder and then hand pressed into the sample holder. Approximately 1cm³ of the material is sufficient for rock mineral analysis but smaller amounts can also be accommodated by using a low background holder.

Code 9	Price
Mineral Identification (semi-quantitative) - minerals are identified and their amounts determined using the Rietveld method	\$136.25
Mineral Identification (quantitative) - minerals are identified and their amounts determined using the Rietveld method Corundum is added to the sample as an internal standard in order to determine the amount of X-ray amorphous material	\$204.50
Mineral Identification (qualitative) - minerals are identified, however their amounts are not determined	\$102.25
Clay Speciation	\$261.25
Mineral Identification (Rietveld) + Clay Speciation	\$386.25


XRD Cluster Analysis

This is a statistical tool that groups XRD patterns into clusters based on the similarity of their peak and profile information, and it can be used to rapidly group large data sets into smaller clusters with more similar mineralogy. This has potential applications for mining and exploration, wherein clustering would highlight existing changes in mineralogy within a deposit. Clustering would also be useful for determining mineralogical variability within metallurgical processing samples that could inform methodology.

Some Useful Applications:

- · Create a multidimensional compositional ore deposit maps or alteration maps
- Ore grade control

Pricing available upon request.

Applied Mineralogy and Metallurgy

Laser Ablation ICPMS

Actlabs offers Laser Ablation ICPMS services for U-Pb dating and In-Situ Trace Elements analysis; the laser beam can analyze spots from 5 microns to 100 microns. It is recommended to use round polished sections or polished thick sections. A number of elements can be scanned at the same time. Some applications include: Analysis of trace elements in carbonate-rich matrices such as mussel shells, otholites, etc. and Rare earth elements scan in minerals.

Electron Microprobe Analysis

The electron microprobe is used to determine the major and minor elements compositions of minerals in polished sections. It is an in-situ microbeam instrument, like the SEM, but wavelength spectrometers (WDS) are used to detect the X-ray counts from the sample surface instead of the EDS. Unlike the EDS, which detects and counts the X-rays signals for all elements at the same time, the WDS counts X-rays signals for only one element at a time. The WDS can count many more X-rays for the specific element in the same length of time and hence is more accurate than EDS, and has a lower detection limit. The relative error for microprobe is +/- 1% with detection limit of around 100.

All pricing is by request. Please contact geometallurgy@actlabs.com

Metallurgical Services

Actlabs offers a full characterization of the ore and evaluation and testing of ore processing and extraction methods. We use geometallurgy techniques to characterize the ore and forecast the behavior of the ore and gangue minerals during processing and optimize the recovery.

We offer bench-scale metallurgical testing which is customized and designed in consultation with each client and project. Services offered cover a wide range of precious metals, base metals and industrial minerals. Additional Services may become available on site and additional services including pilot plant tests are available through a partner service provider, please enquire.

Metallurgical services o	ffered include:	Price
Code S6	Separating -2 micron material	On Request
Code S7mi	Methylene iodide heavy mineral separation specific gravity can be customized (100 grams)	On Request
Code S7w	Sodium polytungstate heavy mineral separation specific gravity can be customized (100 grams)	On Request
Sample Preparation	Custom preparation of small to bulk samples including compositing, blending and preparation of representative test sub-samples Customized crush and grind size	
Comminution	Crushing (Jaw & Roll) Grinding (Steel Ball & Rod, Ceramic Media) Bond Work Index Size Classification (Screening and Cyclosizing)	
Gravity Concentration	Centrifugal Concentration (Knelson) Shaking Table (Wilfley) Heavy Liquid Separation	
Flotation	Batch Flotation Kinetic Testing Locked Cycle Testing	
Hydrometallurgy	Bottle roll and tank leaching Cyanide, acid and alkaline leach CIL & CIP Activated Carbon Testing (Adsorption & Quality) Sequential Diagnostic Leaching	

All pricing is by request. Please contact metallurgy@actlabs.com

Isotopic Analysis & Geochronology

Isotopic Analysis

When submitting samples, please supply details on rock or mineral type and alteration.

Code 10 A - Parameter	Amt. Required	Precision	Price
Pb - Isotopic analysis by HR-ICP-MS (Pb >15ppm) (1-10 samples)	~ 1 g	0.4 - 0.5%	\$257.00
Pb - Isotopic analysis by HR-ICP-MS (Pb >15ppm) (>10 samples)	~ 1 g	0.4 - 0.5%	\$189.75
Pb - Isotopic analysis	~ 1 g	0.1 - 0.2%	On request
Nd - Isotopic Analysis	~ 1 g		On request
Sr - Isotopic Analysis	~ 1 g		On request
Sm-Nd - Isotopic Analysis	~ 1 g		On request
Rb-Sr - Isotopic Analysis	~ 1 g		On request
Hg - Isotopic Analysis	~ 1 g		On request
δ^{13} C – Graphite or Organic Material	1 mg C	0.2 ‰	\$129.25
δ^{13} C and δ^{18} O – Carbonates	1 mg C	0.2 ‰	\$129.25
δ^{13} C and δ^{18} O – Siderite, Magnesite, Dolomite	1 mg C	0.2 ‰	\$129.25
Nitrogen Isotopes - Organic Material			\$189.75
Deuterium Isotopic Analysis – Water	20 ml	3.0 %	\$238.50
Deuterium Isotopic Analysis – Minerals	1 mg	0.2 ‰	\$412.00
δ ¹⁸ O – Water	20 mL	0.2 ‰	\$161.00
$\delta^{18}O$ – Silicates	15 mg	0.3 ‰	\$221.50
$\delta^{18}O$ – Sulphates	25 mg	0.3 ‰	\$192.50
$\delta^{18}O$ – Organics	10 mg N	0.2 ‰	\$198.25
$\delta^{34}S$ – Sulphate	10 mg	0.2 ‰	\$105.50
δ^{34} S – Sulphate in water			\$180.25
δ^{34} S – Sulphide	5 mg	0.2 ‰	\$105.50
$\delta^{34}S$ – Sulphide-bearing material which contains carbonate	100 mg	0.2 ‰	\$181.25
δ^{34} – Silicate rocks which contain sulphur			\$181.25
³ H – Direct	20 mL	8.0 TU	\$206.50
³ H – Enriched	1L	0.8 TU	\$553.00
³ H – Accelerator Mass Spectrometry (AMS)	1L		\$855.00
C-14 - Accelerator Mass Spectrometry (AMS)	please inquire		\$800.00

Isotopic Analysis

Geochronology

The dating strategy depends on the type of formation (magmatic, metamorphic or sedimentary), the sample composition and the age of the formation. The concentration of the mother and the daughter isotopes, as well as the apparent age can be determined with high precision. In many cases, however, the determined age may not be the real age of the geological event. The apparent age may be affected by the post-depositional or post-formation history of the rocks. Natural contamination of chemical sediments with detrital material can also affect the results of dating of diagenesis.

There are some techniques and calculations which can "look through" the post formation event. These include isochron dating (K-Ar, U-Pb, Rb-Sr and Sm-Nd) or the step heating Ar-Ar technique of the K-Ar method. In the Ar-Ar technique, the K and Ar are measured on the same sample aliquot. First the sample is irradiated in a nuclear reactor, where fast neutrons convert some of the 39K to 39Ar. After irradiation, the Ar is released fractionally by incremental heating. The result is a series of apparent ages from which useful information

about the geologic history and the age of the sample can be inferred. Specific techniques for dating clay fractions have also been developed.

Our geochronological services provide dating methods for all types of geological samples through use of modern analytical facilities.

For the dating of a monomineralic sample only tens of milligrams of sample are required. For rocks, a few hundred milligrams are typically used for analysis. Size of the rock sample required will vary considerably for mineral separation depending on which minerals must be separated and the amount and type of the accessory minerals present.

Geochronology			
10 B - Services Offered	Description (All prices by request)		
K-Ar dating	Rock fractions, clay fractions and separated minerals (e.g., biotite, hornblende, sericite, K-feldspar, illite, glauconite, etc.)		
K-Ar dating in duplicate	Two independent measurements on one sample		
⁴⁰ Ar- ³⁹ Ar step heating dating	Rock fractions, clay fractions or separated minerals (e.g., biotite, hornblende, sericite, K-feldspar, illite, glauconite, etc.)		
U-Pb dating by Laser Ablation	Single grain analysis (e.g., zircon, monazite, titanite, apatite)		
Rb-Sr dating by TIMS	Isochron dating whole rock and minerals		
Sm-Nd dating by TIMS	Isochron dating whole rock and minerals		
Re-Os dating	Re-Os dating		
Petrographic description	Includes thin section preparation		
Mineral Separation	Specific mineral phases are separated to provide best data for age dating		

Discounts may be applicable for large dating programs. Contact geochronology@actlabs.com for more information

(Ar-Ar), U-Pb, Rb-Sr or the Sm-Nd dating methods. These analytical procedures include several steps:

CODE 10B - Ages of geological

formations or secondary events (i.e.

alteration or metamorphism) can be determined through using K-Ar,

- (i) dating method selection
- (ii) sample collection
- (iii) sample preparation, mineral separation and treatment
- (iv) irradiation of the samples in a nuclear reactor for the Ar-Ar technique
- (v) high precision determination of the concentration of the mother and daughter isotopes by TIMS (thermal ionization mass spectrometry)
- (vi) apparent age calculation and interpretation of the results

39

Mine Site Services

Mine Site Laboratories allow you to receive a range of Actlabs services on site at your exploration or mining facility. Our mine site laboratory services are custom designed to suit the requirements of your project.

Custom Mobile Sample Laboratories For those projects that have logistical barriers or it's more economical to process samples on-site, Actlabs Mobile Sample Laboratories is your solution. Actlabs can provide and deliver a complete turnkey package to operate an on-site preparation or complete laboratory anywhere in the world. The construction and operation of remote sample testing facilities requires very robust choice of equipment to ensure reliability and to minimize downtime. These labs, with state-of-the art equipment and supplies, can be configured and supplied very quickly as Actlabs maintains a stock of new equipment for custom mobile labs

Some equipment which may be employed in mobile sample labs include:

- Jaw crushers
- Pulverizers
- Splitters (Riffle or Rotary)
- Dust collectors
- Drying ovens
- Core saws

In order to recommend the best solution for your project, we require the following information:

- Type of Analysis Required
- Size and Type of Sample
- Number of samples to be processed per day (maximum and minimum)
- How long the program will operate

Our experienced Mobile Laboratory Team can provide Standard or a customized solution based on your project requirements and is 'Fit for Purpose'. Contact our Client Service Team to discuss your project needs and how Actlabs Custom Mobile Laboratories is the right fit for you; mobilelabs@actlabs.com.

Mine Site Laboratory Services

Mine site laboratories allow you to receive a range of Actlabs services on site at your mining facility. Our mine site laboratory services are fit for propose and designed to suit the requirements of your project.

At Actlabs we:

- Design and build new mine site labs for sample preparation and/or analytical services
- Optimize existing mine site labs
- Expand mobile sample preparation facilities into full-service labs.
- Operate and maintain mine site labs
- Perform Laboratory audits
- Offer training and consulting

Terms and Conditions Fees and Payment

- All prices in this pricelist are exclusive of GST/HST, are in Canadian dollars and apply only to clients submitting samples from Canada
- b) These prices apply to most geological materials for routine analyses. A surcharge may apply for abnormal matrices or nonroutine analytical requirements. The client will be advised of any such conditions prior to performing the analytical work.
- c) A minimum charge of \$100.00 will be effective on all orders. A fee of \$75.00 will be charged if a Chain of Custody form is required.
- d) Payment should accompany the order unless credit has been established. Terms are net 30 days.
- e) Prices and packages are subject to change without notice.
- f) Customers are responsible for paying bank charges and should not be deducted from the total amount of the invoice.
- g) Please select OUR under Details of Charges when paying by direct bank deposit (EFT).
- h) Clients can pay invoices by cheque, bank draft, Visa, Mastercard, AMEX or direct bank deposit (EFT). To pay by credit card, a signature is required - either in the original paperwork or sent by fax or e-mail. We also require the security code found on the card. If paying by Western Union please add a surcharge of 10% to your payment.
- Any customs or shipping charges incurred while shipping samples to Actlabs is the responsibility of the customer, unless specified otherwise.

Liability

- a) Any analysis, testing, inspection or investigation in connection with any work performed by Activation Laboratories Ltd. shall be conducted in accordance with recognized professional analytical standards. Neither Activation Laboratories Ltd., nor its subcontractors, consultants, agents, officers or employees shall be held responsible for any loss or damage resulting directly or indirectly from any default, negligence, error or omission. While every effort will be taken to store the unused portion of your samples, Activation Laboratories Ltd. cannot bear any responsibility for loss or damage, regardless of the cause.
- b) The liability, if any, of Activation Laboratories Ltd. shall be limited to the cost of performing the analyses.
- c) Governing law shall be in the Province of Ontario, Canada.

Services

- a) We reserve the right to subcontract work to affiliated laboratories.
- b) It is the responsibility of the client to determine the suitability of any services provided by Activation Laboratories Ltd.

Confidentiality

a) All data derived on client's samples is confidential only to the client and cannot be disclosed to other parties unless approved in writing by the client. In the event of demands by regulatory bodies data may be released to them if subpoenaed. Actlabs will inform and obtain consent in advance from the customers for the information the laboratory intends to make public.

For direct bank deposit, pay to the account of Activation Laboratories Ltd. Royal Bank of Canada 59 Wilson Street West Ancaster, Ontario CANADA L9G 1N1 Tel: (905) 648-4411 Transit # 00102 Institution # 003 Swift: Royccat2 Account # 100 011 6

Ρ

Rb

S

Sr

Th

Ti

U

W

V

Zr

Useful Information

Geochemistry vs. Assays

Geochemistry analysis provides an expected precision of +/- 20% at ≥100x the detection limit. This type of analysis is for trace levels of metals and base metals generally less than 1%.

Assays analyses are for ore reserve calculations and can measure higher levels of metals and with increased precision of +/- 2-3% at greater than 100x the detection limit. For major elements the precision is expected to be +/- 1-2% at greater than 100x the detection limit.

Chemical Conversions			Common Tyler Sieve Sizes		
Element	Compound	Factor	Mesh	Aperature (µm)	
Al	Al ₂ O ₃	1.889	10	2,000	
Ba	BaSO ₄	1.699	20	841	
Ca	CaO	1.399	35	500	
CaO	CaCO₃	1.785	60	250	
CaO	CaSO ₄	3.397	80	177	
Ca	CaF ₂	1.948	100	149	
CaO	CaF ₂	1.392	150	105	
Cr	Cr_2O_3	1.462	170	88	
Fe	FeO	1.286	200	74	
FeO	Fe ₂ O ₃	1.111	250	63	
Fe	Fe ₂ O ₃	1.43	270	53	
К	K ₂ O	1.205	325	44	
Li	Li ₂ O	2.1527	400	37	
Mg	MgO	1.658			
Mn	MnO	1.291			
Мо	MoS ₂	1.668			
Na	Na ₂ O	1.348			

2.291

1.0936

2.996

2.096

1.138

1.668 1.179

1.261

1.785

1.35

Common Drill Core Sizes				
Size	Core Diameter (mm)	Core Volume Per Meter Length (m ³ x10 ⁻³)		
AQ	27.0	0.57		
TT	35.0	0.96		
BQ	36.4	1.04		
NQ	47.6	1.78		
HQ	63.5	3.17		
BQ3	33.5	0.88		

Core weight per metre (kg) = Core volume per metre x specific gravity

1.38% Fe₃O₄ (magnetite)

2 lbs/ton U₃O₈

Gold Conversion Factors		c	Grain Size (Diameter)		
1 ppb	0.001 g/t	Gravel	2 to 4 mm		
1 ppm	1 g/t	Sand	63 µm - 2 mm		
1 oz/ton	34.286 g/t	Silt	4-63 µm		
1 gram/tonne	0.0292 oz/ton	Clay	<4 µm		
1 gram/m3	0.0421oz/yd3				

Pulverization Contaminants Added		Ore Content		
Mill Type	Contaminant Added	1% Cu	2.89% CuFeS ₂ (chalcopyrite)	
Mild Steel (best choice)	Fe (up to 0.2%)	1% Mo	1.67% MoS ₂ (molybdenite)	
Hardened Steel	Fe (up to 0.2%), Cr (up to 200 ppm), trace Ni, Si, Mn and C	1% Pb	1.15% PbS (galena)	
		1% U	1.18% U₃Oଃ (pitchblende)	
Ceramic	Al (up to 0.2%), Ba, trace REE	1% W	1.26% WO₃ (scheelite)	
Tungsten Carbide	W (up to 0.1%), Co, C, Ta, Nb and Ti	1% Zn	1.49% ZnS (sphalerite)	
Agate	Si (up to 0.3%), Al, Na, Fe, K, Ca, Mg, Pb	1% Fe	2.15% FeS ₂ (pyrite)	
(amount added depends on hardness of material and particle size required)		1% Fe	1.57% FeS (pyrrhotite)	
		1% Fe	1.38% Fe₃O₄ (magnetite)	

0.1% U₃O₈

 P_2O_5

 Rb_2O

 SO_4

SrSO₄

ThO₂

TiO₂

U₃O₈

WO₃

 V_2O_5

ZrO₂

ITS
ELEM
Ë
BLE
ERIC
0

VIIIA VIIIA VIIIA Atoma 2.3 Neon 2.3 Neon 2.3 Neon 2.2 Neon 2 Neon 2 Neon 2 Ne 2 Neon 2 Neon 2 Neon 2 Ne Neon 2 Neon 2 Neon 2 Ne	Argon 39,948 2-8-8	36 Krypton 83.798 2.8-8-8	54 Xenon 131.29 2-8-18-18-8	86 Radon (222) 2-8-18-32-18-8	118 0ganesson (294) 2-8-8-32-8-8	
17 9 VIIA 1999 1899 123	Chlorine 35.45 2-87	35 Bronnine 79:904 2-8-85-7	53	85 Atatine (210) 2-8-18-72-18-7	Tennessine 2-8-18-22-28-78	
16 16 15 15 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16	Suttur 2,24-6 2,8-6	34 Setenium 2-8-86-6	52 Tellurium ^{127,60} 2-8-18-18-6	84 Potonium (209) 2-8-18-5	116 LV Livermorium 2-8-8-32-32-8-6	R A
VA VA Mirogen 253 254	15 Phosphorus 28-5	33 Arsenic 74,922 2.8-18-5	51 Sbb Antimony 24-18-18-5	83 Bismuth 208.98 2-8-3-2-8-5	115 Moscovium (290) 2-8-8-32-22-8-5	[%]
Zachoon Zachoon 24 24 24 24 24 24 24 24 24 24 24 24 24	280.085 280.085 2-8-4	32 Ge rmanium ^{72.630}	50 In 2-8-18-34	82 Pb ^{207.2} 2.8-18-37-18-4	114 Flerovium 2-8-18-22-18-4	° Ц
	Atuminium 2.8.382 2.8-3	31 Gallium ^{2,24-18-3}	49 Indium 14.82 2-8-18-18-3	81 Thattium 204.38 2-8-18-32-18-3	113 Nihonium (286) 2-8-18-32-18-3	E H H
roperties	IB IB	$Z^{30}_{\text{S,38}}$	48 Cadmium 12.41 2-8-18-12	80 Mercury 200.59 2.8-8-32-18-2	112 Conternicium Copernicium 2-8-18-32-32-19-2	
Unknown chemical properties	⊟ ⊟	29 Copper 2.8-8-10-1	47 Agg Silver 2-8-18-18-1	P9 Gold 196.97 2-8-18-32-38-1	Roentgenium 2-8-18-32-77-2	92 H
s and and and and and and and and and and	10 VIIIB	28 Nickel 2-8-6-2	46 Pattadium 106.42 2.9-19-18	78 Platinum 195.08 2-8-18-32-77-7	110 Darmstadtium 2-8-18-32-32-77-1	⁴
Atomic Number	Noble gases	27 Cobalt 56,933 2-8-15-2	45 Rhodium 102.91 2-81-16-1	77	109 Meitnerium (278) 2-8-18-22-5-2	۲ ۲
13 Auminium 26.982 2.6.982 2.6.982 0id-nonmetal trend (colo inthanides	Post-transition metals 7 8 VIIB VIIIB	26 Iron 2.8-8-4-2	44 Ruthenium 01.07 2-8-16-1	76 Osmium 190.23 2-8-18-32-14-2	108 Hassium (277) 2-8-8-32-32-44-2	3 3 6
Inder → 13 Name → Aluminit Science Science Science 26:982 26:983 26:993 26:983 26:993		25 Manganese 54,938044 2-8-18-2	$T_{^{26}}^{^{43}}$	75 Rhenium 186.21 2-8-18-32-13-2	107 Bohrium (270) 2-6-18-22-32-13-2	ع م
Atomic Number	Transition metals 6 VIB	24 Chromium 51,9%1 2-8-18-1	42 Molybdenum 95,95 2-8-18-13-1	74 Tungsten 183.84 2-8-18-32-12-2	106 Sea borgium 2-6-18-22-22-22-22-22-22-22-22-22-22-22-22-22	۶N ۱
	∠ 5 ∠B	23 Vanadium 2.8-11-2 2-8-11-2	41 Niabium 2-8-18-12-1	73 Tantalum 180.94788 2-8-18-32-11-2	105 Dubnium (268) 2-6-8-22-71-2	2 ⁶
State of matter (color of name) GAS LIQUID SOLID UNKNOWN	4 IVB	22 Titanium ^{2,8-10-2}	$Z^{40}_{Irconium}$	72 Hafnium 178.49 2-8-18-32-10-2	104 Rutherfordium 2-6-18-32-32-10-2	D 2
State of GAS LI	⊞ 3	21 Scandium 44.955908 2-8-9-2	39 Yttrium 88,90584 2-8-18-9-2	57-71 Lanthanides	89-103 Actinides	21 21
Bendlium Sanza 22	Magnesium 224,305 228-2	20 Catclium 2-8-8-2 2-8-8-2	38 Strantium ^{87,62} 2-8-18-4-2	56 Barium 137.327 249-18-86-2	88 Radium (226) 2-8-18-8-2	
Hydrogen 108 Hydro	Sodium 22298976928	19 Potassium 39.0983 2-8-8-1	37 Rubidium 85.4678 24-88-84	55 Caesium 132.90545196 2-8-18-18-4-1	87 Francium 2-8-18-22-8-8-1	

Actlabs Locations

Canada

MAIN LABORATORY (GLOBAL HEADQUARTERS) Activation Laboratories Ltd. (Actlabs) 41 Bittern Street Ancaster Ontario L9G 4V5 CANADA

Tel: +1.905.648.9611 Toll Free: 1.888.228.5227 (1.888.ACTLABS) Email: ancaster@actlabs.com ISO/IEC 17025, Health Canada OMAFRA

Actlabs Dryden 264 Government Road Dryden, Ontario P8N 2R3 CANADA

Tel: +1.807.223.6168 Fax: +1.807.223.6954 Email: dryden@actlabs.com

Actlabs Fredericton 230 Hodgson Road, Unit 5 Fredericton, New Brunswick E3C 2G4 CANADA

Tel: +1.506.472.2831 Fax: +1.506.472.0111 Email: fredericton@actlabs.com

Actlabs Kamloops

1790 Versatile Drive Kamloops, British Columbia V1S 1S2 CANADA Tel: +1.250.573.4484 Email: kamloops@actlabs.com ISO/IEC 17025

Actlabs North Bay 191 Booth Road, Unit #18 North Bay, Ontario P1A 4K3 CANADA

Tel: +1.705.476.1066 Email: northbay@actlabs.com

Actlabs Ste-Germaine-Boulé

184, rue Principale Ste-Germaine-Boulé, Abitibi, Québec JOZ 1M0 CANADA

Tel: +1.819.787.6116 Fax: +1.819.787.6527 Email: infoquebec@actlabs.com ISO/IEC 17025

Actlabs Thunder Bay 1201 Walsh Street West Thunder Bay, Ontario P7E 4X6 CANADA

Tel: +1.807.622.6707 Fax: +1.807.622.6571 Email: thunderbay@actlabs.com ISO/IEC 17025

Actlabs Timmins 1752 Riverside Drive Timmins, Ontario P4R 1N7 CANADA

Tel: +1.705.264.0123 Email: timmins@actlabs.com ISO/IEC 17025

Actlabs Val d'Or 150 Rue Georges Dumont Val-d'Or, Québec J9P 7B2 CANADA

Tel.: +1.819.824.2777 Email: valdor@actlabs.com

Burkina Faso

Actlabs Burkina Faso SARL Rue Warba PK1 Ouest N-6 Sect. 16 09 BP 120 Ouagadougou 09 BURKINA FASO

Tél. Bureau: +226 25369203 Mobile 1 (WhatsApp): +226 65110059 Mobile 2: +226 78516199 Mobile 3: +226 70243571 Email: burkina@actlabs.com ISO 9001:2015

Colombia

Actlabs Colombia Zona Franca Rionegro #172 Vereda Chachafruto, Rionegro, Antioquia, Colombia

Tel: (+57) 604 424 2860 Email: colombia@actlabs.com ISO 9001:2015

Guyana

Actlabs Guyana 27/28 Parcel Beterverwagting Industrial Area, East Coast Demerara, GUYANA

Tel./Fax: 59.2.220.2311 Email: guyana@actlabs.com ISO 9001:2015

Mexico

Actlabs Mexico S.A. de C.V Calle Cantera # 3200 Conjunto Industrial de la Plata Guadalupe, Zacatecas C.P 98604 MEXICO

Tel: +52.492.998.1091 Fax:+52.492.998.1092 Email: mexico@actlabs.com ISO 9001:2015

Namibia

Actlabs Namibia (PTY) Ltd. 267 Cobalt Street, Prosperita, Windhoek P.O. Box 35258, Kleine Kuppe, Windhoek, NAMIBIA

Tel: (+264) (0)61 231010 Fax: (+264) (0)61 231013 Email: namibia@actlabs.com

* For information on which test methods are accredited, please refer to the Actlabs or SCC website

www.actlabs.com

